Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(4): 040304    DOI: 10.1088/1674-1056/27/4/040304
GENERAL Prev   Next  

Controlling the entanglement of mechanical oscillators in composite optomechanical system

Jun Zhang(张俊)1, Qing-Xia Mu(穆青霞)2, Wen-Zhao Zhang(张闻钊)3
1. School of Mathematics and Statistics, Guizhou University of Finance and Economics, Guiyang 550025, China;
2. Mathematics and Physics Department, North China Electric Power University, Beijing 102206, China;
3. Beijing Computational Science Research Center(CSRC), Beijing 100193, China
Abstract  A controllable entanglement scheme of two mechanical oscillators is proposed in a composite optomechanical system. In the case of strong driving and high dissipation, the dynamics of the movable mirror of the optomechanical cavity is characterized by an effective frequency in the long-time evolution of the system. Considering the classical nonlinear effects in an optomechanical system, we investigate the relationship between the effective frequency of the movable mirror and the adjustable parameters of the cavity. It shows that the effective frequency of the movable mirror can be adjusted ranging from ωm (the resonance frequency of the coupling oscillator) to -ωm. Under the condition of experimental realization, we can generate and control steady-state entanglement between two oscillators by adjusting the effective frequency of the movable mirror and reducing the effective dissipation by selecting the parameter of the cavity driving laser appropriately. Our scheme provides a promising platform to control the steady-state behavior of solid-state qubits using classical manipulation, which is significant for quantum information processing and fundamental research.
Keywords:  entanglement      optomechanics  
Received:  28 November 2017      Revised:  18 January 2018      Accepted manuscript online: 
PACS:  03.67.Mn (Entanglement measures, witnesses, and other characterizations)  
  42.50.-p (Quantum optics)  
  03.67.Bg (Entanglement production and manipulation)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11704026 and 11461016), the Fund from Guizhou University of Finance and Economics, China (Grant No. 2017XZD01), and the Guizhou Youth Science and Technology Talent Development Project (Grant Nos.[2016] 170 and[2017] 150).
Corresponding Authors:  Wen-Zhao Zhang     E-mail:  zhangwz@csrc.ac.cn

Cite this article: 

Jun Zhang(张俊), Qing-Xia Mu(穆青霞), Wen-Zhao Zhang(张闻钊) Controlling the entanglement of mechanical oscillators in composite optomechanical system 2018 Chin. Phys. B 27 040304

[1] Cheng J, Zhang W Z, Zhou L and Zhang W 2016 Sci. Rep. 6 23678
[2] Cerletti V, Gywat O and Loss D 2005 Phys. Rev. B 72 115316
[3] Wang C, Zhang Y and Jin G S 2011 Phys. Rev. A 84 032307
[4] Sangouard N, Simon C, Coudreau T and Gisin N 2008 Phys. Rev. A 78 050301
[5] Wang G, Huang L, Lai Y C and Grebogi C 2014 Phys. Rev. Lett. 112 110406
[6] Slodička L, Hétet G, Röck N, Schindler P, Hennrich M and Blatt R 2013 Phys. Rev. Lett. 110 083603
[7] Nicacio F, Furuya K and Semião F L 2013 Phys. Rev. A 88 022330
[8] Liao J Q and Tian L 2016 Phys. Rev. Lett. 116 163602
[9] Beau M, Kiukas J, Egusquiza I L and del Campo A 2017 Phys. Rev. Lett. 119 130401
[10] Pikovski I, Zych M, Costa F and Brukner Č 2015 Nat. Phys. 11 668
[11] Zurek W H 2003 Rev. Mod. Phys. 75 715
[12] Chen T Y, Zhang W Z, Fang R Z, Hang C Z and Zhou L 2017 Opt. Express 25 10779
[13] Zhang W Z, Cheng J, Liu J Y and Zhou L 2015 Phys. Rev. A 91 063836
[14] Aspelmeyer M, Kippenberg T J and Marquardt F 2014 Rev. Mod. Phys. 86 1391
[15] Chen X, Liu Y C, Peng P, Zhi Y and Xiao Y F 2015 Phys. Rev. A 92 033841
[16] Fong K Y, Fan L, Jiang L, Han X and Tang H X 2014 Phys. Rev. A 90 051801
[17] Dong Y, Ye J and Pu H 2011 Phys. Rev. A 83 031608
[18] Heikkilä T T, Massel F, Tuorila J, Khan R and Sillanpää M A 2014 Phys. Rev. Lett. 112 203603
[19] He Y 2015 Appl. Phys. Lett. 106 121905
[20] Zhang W Z, Han Y, Xiong B and Zhou L 2017 New J. Phys. 19 083022
[21] Černotík O C V and Hammerer K 2016 Phys. Rev. A 94 012340
[22] Liao J Q, Wu Q Q and Nori F 2014 Phys. Rev. A 89 014302
[23] Lian J, Liu N, Liang J Q, Chen G and Jia S 2013 Phys. Rev. A 88 043820
[24] Stannigel K, Rabl P, Sorensen A S, Lukin M D and Zoller P 2011 Phys. Rev. A 84 042341
[25] Thompson J D, Zwickl B M, Jayich A M, Marquardt F, Girvin S M and Harris J G E 2008 Nature 452 72
[26] Mu Q, Zhao X and Yu T 2016 Phys. Rev. A 94 012334
[27] Wang Y D and Clerk A A 2013 Phys. Rev. Lett. 110 253601
[28] Tan H, Li G and Meystre P 2013 Phys. Rev. A 87 033829
[29] Woolley M J and Clerk A A 2014 Phys. Rev. A 89 063805
[30] Wang M, Lü X Y, Wang Y D, You J Q and Wu Y 2016 Phys. Rev. A 94 053807
[31] Liu Y C, Liu R S, Dong C H, Li Y, Gong Q and Xiao Y F 2015 Phys. Rev. A 91 013824
[32] Ghobadi R, Bahrampour A R and Simon C 2011 Phys. Rev. A 84 033846
[33] Gröblacher S, Hammerer K, Vanner M R and Aspelmeyer M 2009 Nature 460 724
[34] Chan J, Alegre T P M, Safavi-Naeini A H, Hill J T, Krause A, Gröblacher S, Aspelmeyer M and Painter O 2011 Nature 478 89
[35] Teufel J D, Donner T, Li D, Harlow J W, Allman M S, Cicak K, Sirois a J, Whittaker J D, Lehnert K W and Simmonds R W 2011 Nature 475 359
[36] U S S and Narayanan A 2013 Phys. Rev. A 88 033802
[37] Qu K and Agarwal G S 2015 Phys. Rev. A 91 063815
[38] Doolin C, Hauer B D, Kim P H, MacDonald A J R, Ramp H and Davis J P 2014 Phys. Rev. A 89 053838
[39] Plenio M B 2005 Phys. Rev. Lett. 95 090503
[40] Okamoto H, Gourgout A, Chang C Y, Onomitsu K, Mahboob I, Chang E Y and Yamaguchi H 2013 Nat. Phys. 9 598
[41] Ma P C, Zhang J Q, Xiao Y, Feng M and Zhang Z M 2014 Phys. Rev. A 90 043825
[42] Tian L, Allman M S and Simmonds R W 2008 New J. Phys. 10 115001
[1] Tunable phonon-atom interaction in a hybrid optomechanical system
Yao Li(李耀), Chuang Li(李闯), Jiandong Zhang(张建东),Ying Dong(董莹), and Huizhu Hu(胡慧珠). Chin. Phys. B, 2023, 32(4): 044213.
[2] Unified entropy entanglement with tighter constraints on multipartite systems
Qi Sun(孙琪), Tao Li(李陶), Zhi-Xiang Jin(靳志祥), and Deng-Feng Liang(梁登峰). Chin. Phys. B, 2023, 32(3): 030304.
[3] Entanglement and thermalization in the extended Bose-Hubbard model after a quantum quench: A correlation analysis
Xiao-Qiang Su(苏晓强), Zong-Ju Xu(许宗菊), and You-Quan Zhao(赵有权). Chin. Phys. B, 2023, 32(2): 020506.
[4] Transformation relation between coherence and entanglement for two-qubit states
Qing-Yun Zhou(周晴云), Xiao-Gang Fan(范小刚), Fa Zhao(赵发), Dong Wang(王栋), and Liu Ye(叶柳). Chin. Phys. B, 2023, 32(1): 010304.
[5] Nonreciprocal coupling induced entanglement enhancement in a double-cavity optomechanical system
Yuan-Yuan Liu(刘元元), Zhi-Ming Zhang(张智明), Jun-Hao Liu(刘军浩), Jin-Dong Wang(王金东), and Ya-Fei Yu(於亚飞). Chin. Phys. B, 2022, 31(9): 094203.
[6] Characterizing entanglement in non-Hermitian chaotic systems via out-of-time ordered correlators
Kai-Qian Huang(黄恺芊), Wei-Lin Li(李蔚琳), Wen-Lei Zhao(赵文垒), and Zhi Li(李志). Chin. Phys. B, 2022, 31(9): 090301.
[7] Direct measurement of two-qubit phononic entangled states via optomechanical interactions
A-Peng Liu(刘阿鹏), Liu-Yong Cheng(程留永), Qi Guo(郭奇), Shi-Lei Su(苏石磊), Hong-Fu Wang(王洪福), and Shou Zhang(张寿). Chin. Phys. B, 2022, 31(8): 080307.
[8] Purification in entanglement distribution with deep quantum neural network
Jin Xu(徐瑾), Xiaoguang Chen(陈晓光), Rong Zhang(张蓉), and Hanwei Xiao(肖晗微). Chin. Phys. B, 2022, 31(8): 080304.
[9] Robustness of two-qubit and three-qubit states in correlated quantum channels
Zhan-Yun Wang(王展云), Feng-Lin Wu(吴风霖), Zhen-Yu Peng(彭振宇), and Si-Yuan Liu(刘思远). Chin. Phys. B, 2022, 31(7): 070302.
[10] Self-error-rejecting multipartite entanglement purification for electron systems assisted by quantum-dot spins in optical microcavities
Yong-Ting Liu(刘永婷), Yi-Ming Wu(吴一鸣), and Fang-Fang Du(杜芳芳). Chin. Phys. B, 2022, 31(5): 050303.
[11] Nonlocal nonreciprocal optomechanical circulator
Ji-Hui Zheng(郑继会), Rui Peng(彭蕊), Jiong Cheng(程泂), Jing An(安静), and Wen-Zhao Zhang(张闻钊). Chin. Phys. B, 2022, 31(5): 054204.
[12] Effects of colored noise on the dynamics of quantum entanglement of a one-parameter qubit—qutrit system
Odette Melachio Tiokang, Fridolin Nya Tchangnwa, Jaures Diffo Tchinda,Arthur Tsamouo Tsokeng, and Martin Tchoffo. Chin. Phys. B, 2022, 31(5): 050306.
[13] Probabilistic resumable quantum teleportation in high dimensions
Xiang Chen(陈想), Jin-Hua Zhang(张晋华), and Fu-Lin Zhang(张福林). Chin. Phys. B, 2022, 31(3): 030302.
[14] Tetrapartite entanglement measures of generalized GHZ state in the noninertial frames
Qian Dong(董茜), R. Santana Carrillo, Guo-Hua Sun(孙国华), and Shi-Hai Dong(董世海). Chin. Phys. B, 2022, 31(3): 030303.
[15] Entanglement spectrum of non-Abelian anyons
Ying-Hai Wu(吴英海). Chin. Phys. B, 2022, 31(3): 037302.
No Suggested Reading articles found!