|
|
Controlling the entanglement of mechanical oscillators in composite optomechanical system |
Jun Zhang(张俊)1, Qing-Xia Mu(穆青霞)2, Wen-Zhao Zhang(张闻钊)3 |
1. School of Mathematics and Statistics, Guizhou University of Finance and Economics, Guiyang 550025, China; 2. Mathematics and Physics Department, North China Electric Power University, Beijing 102206, China; 3. Beijing Computational Science Research Center(CSRC), Beijing 100193, China |
|
|
Abstract A controllable entanglement scheme of two mechanical oscillators is proposed in a composite optomechanical system. In the case of strong driving and high dissipation, the dynamics of the movable mirror of the optomechanical cavity is characterized by an effective frequency in the long-time evolution of the system. Considering the classical nonlinear effects in an optomechanical system, we investigate the relationship between the effective frequency of the movable mirror and the adjustable parameters of the cavity. It shows that the effective frequency of the movable mirror can be adjusted ranging from ωm (the resonance frequency of the coupling oscillator) to -ωm. Under the condition of experimental realization, we can generate and control steady-state entanglement between two oscillators by adjusting the effective frequency of the movable mirror and reducing the effective dissipation by selecting the parameter of the cavity driving laser appropriately. Our scheme provides a promising platform to control the steady-state behavior of solid-state qubits using classical manipulation, which is significant for quantum information processing and fundamental research.
|
Received: 28 November 2017
Revised: 18 January 2018
Accepted manuscript online:
|
PACS:
|
03.67.Mn
|
(Entanglement measures, witnesses, and other characterizations)
|
|
42.50.-p
|
(Quantum optics)
|
|
03.67.Bg
|
(Entanglement production and manipulation)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11704026 and 11461016), the Fund from Guizhou University of Finance and Economics, China (Grant No. 2017XZD01), and the Guizhou Youth Science and Technology Talent Development Project (Grant Nos.[2016] 170 and[2017] 150). |
Corresponding Authors:
Wen-Zhao Zhang
E-mail: zhangwz@csrc.ac.cn
|
Cite this article:
Jun Zhang(张俊), Qing-Xia Mu(穆青霞), Wen-Zhao Zhang(张闻钊) Controlling the entanglement of mechanical oscillators in composite optomechanical system 2018 Chin. Phys. B 27 040304
|
[1] |
Cheng J, Zhang W Z, Zhou L and Zhang W 2016 Sci. Rep. 6 23678
|
[2] |
Cerletti V, Gywat O and Loss D 2005 Phys. Rev. B 72 115316
|
[3] |
Wang C, Zhang Y and Jin G S 2011 Phys. Rev. A 84 032307
|
[4] |
Sangouard N, Simon C, Coudreau T and Gisin N 2008 Phys. Rev. A 78 050301
|
[5] |
Wang G, Huang L, Lai Y C and Grebogi C 2014 Phys. Rev. Lett. 112 110406
|
[6] |
Slodička L, Hétet G, Röck N, Schindler P, Hennrich M and Blatt R 2013 Phys. Rev. Lett. 110 083603
|
[7] |
Nicacio F, Furuya K and Semião F L 2013 Phys. Rev. A 88 022330
|
[8] |
Liao J Q and Tian L 2016 Phys. Rev. Lett. 116 163602
|
[9] |
Beau M, Kiukas J, Egusquiza I L and del Campo A 2017 Phys. Rev. Lett. 119 130401
|
[10] |
Pikovski I, Zych M, Costa F and Brukner Č 2015 Nat. Phys. 11 668
|
[11] |
Zurek W H 2003 Rev. Mod. Phys. 75 715
|
[12] |
Chen T Y, Zhang W Z, Fang R Z, Hang C Z and Zhou L 2017 Opt. Express 25 10779
|
[13] |
Zhang W Z, Cheng J, Liu J Y and Zhou L 2015 Phys. Rev. A 91 063836
|
[14] |
Aspelmeyer M, Kippenberg T J and Marquardt F 2014 Rev. Mod. Phys. 86 1391
|
[15] |
Chen X, Liu Y C, Peng P, Zhi Y and Xiao Y F 2015 Phys. Rev. A 92 033841
|
[16] |
Fong K Y, Fan L, Jiang L, Han X and Tang H X 2014 Phys. Rev. A 90 051801
|
[17] |
Dong Y, Ye J and Pu H 2011 Phys. Rev. A 83 031608
|
[18] |
Heikkilä T T, Massel F, Tuorila J, Khan R and Sillanpää M A 2014 Phys. Rev. Lett. 112 203603
|
[19] |
He Y 2015 Appl. Phys. Lett. 106 121905
|
[20] |
Zhang W Z, Han Y, Xiong B and Zhou L 2017 New J. Phys. 19 083022
|
[21] |
Černotík O C V and Hammerer K 2016 Phys. Rev. A 94 012340
|
[22] |
Liao J Q, Wu Q Q and Nori F 2014 Phys. Rev. A 89 014302
|
[23] |
Lian J, Liu N, Liang J Q, Chen G and Jia S 2013 Phys. Rev. A 88 043820
|
[24] |
Stannigel K, Rabl P, Sorensen A S, Lukin M D and Zoller P 2011 Phys. Rev. A 84 042341
|
[25] |
Thompson J D, Zwickl B M, Jayich A M, Marquardt F, Girvin S M and Harris J G E 2008 Nature 452 72
|
[26] |
Mu Q, Zhao X and Yu T 2016 Phys. Rev. A 94 012334
|
[27] |
Wang Y D and Clerk A A 2013 Phys. Rev. Lett. 110 253601
|
[28] |
Tan H, Li G and Meystre P 2013 Phys. Rev. A 87 033829
|
[29] |
Woolley M J and Clerk A A 2014 Phys. Rev. A 89 063805
|
[30] |
Wang M, Lü X Y, Wang Y D, You J Q and Wu Y 2016 Phys. Rev. A 94 053807
|
[31] |
Liu Y C, Liu R S, Dong C H, Li Y, Gong Q and Xiao Y F 2015 Phys. Rev. A 91 013824
|
[32] |
Ghobadi R, Bahrampour A R and Simon C 2011 Phys. Rev. A 84 033846
|
[33] |
Gröblacher S, Hammerer K, Vanner M R and Aspelmeyer M 2009 Nature 460 724
|
[34] |
Chan J, Alegre T P M, Safavi-Naeini A H, Hill J T, Krause A, Gröblacher S, Aspelmeyer M and Painter O 2011 Nature 478 89
|
[35] |
Teufel J D, Donner T, Li D, Harlow J W, Allman M S, Cicak K, Sirois a J, Whittaker J D, Lehnert K W and Simmonds R W 2011 Nature 475 359
|
[36] |
U S S and Narayanan A 2013 Phys. Rev. A 88 033802
|
[37] |
Qu K and Agarwal G S 2015 Phys. Rev. A 91 063815
|
[38] |
Doolin C, Hauer B D, Kim P H, MacDonald A J R, Ramp H and Davis J P 2014 Phys. Rev. A 89 053838
|
[39] |
Plenio M B 2005 Phys. Rev. Lett. 95 090503
|
[40] |
Okamoto H, Gourgout A, Chang C Y, Onomitsu K, Mahboob I, Chang E Y and Yamaguchi H 2013 Nat. Phys. 9 598
|
[41] |
Ma P C, Zhang J Q, Xiao Y, Feng M and Zhang Z M 2014 Phys. Rev. A 90 043825
|
[42] |
Tian L, Allman M S and Simmonds R W 2008 New J. Phys. 10 115001
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|