Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(3): 036501    DOI: 10.1088/1674-1056/27/3/036501
Special Issue: TOPICAL REVIEW — Thermal and thermoelectric properties of nano materials
TOPICAL REVIEW—Thermal and thermoelectric properties of nano materials Prev   Next  

Thermal transport in phosphorene and phosphorene-based materials: A review on numerical studies

Yang Hong(洪扬)1, Jingchao Zhang(张景超)2, Xiao Cheng Zeng(曾晓成)1
1 Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, USA;
2 Holland Computing Center, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
Abstract  The recently discovered two-dimensional (2D) layered material phosphorene has attracted considerable interest as a promising p-type semiconducting material. In this article, we review the recent advances in numerical studies of the thermal properties of monolayer phosphorene and phosphorene-based heterostructures. We first briefly review the commonly used first-principles and molecular dynamics (MD) approaches to evaluate the thermal conductivity and interfacial thermal resistance of 2D phosphorene. Principles of different steady-state and transient MD techniques have been elaborated on in detail. Next, we discuss the anisotropic thermal transport of phosphorene in zigzag and armchair chiral directions. Subsequently, the in-plane and cross-plane thermal transport in phosphorene-based heterostructures such as phosphorene/silicon and phosphorene/graphene is summarized. Finally, the numerical research in the field of thermal transport in 2D phosphorene is highlighted along with our perspective of potentials and opportunities of 2D phosphorenes in electronic applications such as photodetectors, field-effect transistors, lithium ion batteries, sodium ion batteries, and thermoelectric devices.
Keywords:  thermal conductivity      interfacial thermal resistance      first-principles      molecular dynamics  
Received:  18 September 2017      Revised:  11 October 2017      Accepted manuscript online: 
PACS:  65.40.-b (Thermal properties of crystalline solids)  
  65.80.-g (Thermal properties of small particles, nanocrystals, nanotubes, and other related systems)  
  66.10.cd (Thermal diffusion and diffusive energy transport)  
  66.70.-f (Nonelectronic thermal conduction and heat-pulse propagation in solids;thermal waves)  
Corresponding Authors:  Jingchao Zhang, Xiao Cheng Zeng     E-mail:  zhang@unl.edu;xzeng1@unl.edu

Cite this article: 

Yang Hong(洪扬), Jingchao Zhang(张景超), Xiao Cheng Zeng(曾晓成) Thermal transport in phosphorene and phosphorene-based materials: A review on numerical studies 2018 Chin. Phys. B 27 036501

[1] Zhang Y, Zheng Y, Rui K, Hng H H, Hippalgaonkar K, Xu J, Sun W, Zhu J, Yan Q and Huang W 2017 Small 13 1700661
[2] Ong Z Y, Zhang G and Zhang Y W 2014 J. Appl. Phys. 116 214505
[3] Cai Y, Zhang G and Zhang Y W 2014 Sci. Rep. 4 6677
[4] Li W, Zhang G and Zhang Y W 2014 J. Phys. Chem. C 118 22368
[5] Zhang S, Yang J, Xu R, Wang F, Li W, Ghufran M, Zhang Y W, Yu Z, Zhang G, Qin Q and Lu Y 2014 ACS Nano 8 9590
[6] Li L, Yu Y, Ye G J, Ge Q, Ou X, Wu H, Feng D, Chen X H and Zhang Y 2014 Nat. Nanotechnol. 9 372
[7] Churchill H O H and Jarillo-Herrero P 2014 Nat. Nanotechnol. 9 330
[8] Dhanabalan S C, Ponraj J S, Guo Z, Li S, Bao Q and Zhang H 2017 Adv. Sci. 4 1600305
[9] Yu X C, Zhang S L, Zeng H B and Wang Q J 2016 Nano Energy 25 34
[10] Lu J P, Yang J, Carvalho A, Liu H W, Lu Y R and Sow C H 2016 Accounts Chem. Res. 49 1806
[11] Eswaraiah V, Zeng Q S, Long Y and Liu Z 2016 Small 12 3480
[12] Lu J P, Carvalho A, Wu J, Liu H W, Tok E S, Neto A H C, Ozyilmaz B and Sow C H 2016 Adv. Mater. 28 4090
[13] Tan W C, Cai Y, Ng R J, Huang L, Feng X, Zhang G, Zhang Y W, Nijhuis C A, Liu X and Ang K W 2017 Adv. Mater. 29 1700503
[14] Prakash A, Cai Y, Zhang G, Zhang Y W and Ang K W 2017 Small 13 1602909
[15] Liu H, Neal A T, Zhu Z, Luo Z, Xu X, Tománek D and Ye P D 2014 ACS Nano 8 4033
[16] Ling Z P, Sakar S, Mathew S, Zhu J T, Gopinadhan K, Venkatesan T and Ang K W 2015 Sci. Rep. 5 18000
[17] Low T, Rodin A S, Carvalho A, Jiang Y, Wang H, Xia F and Castro Neto A H 2014 Phys. Rev. B 90 075434
[18] Doganov R A, O'Farrell E C T, Koenig S P, Yeo Y, Ziletti A, Carvalho A, Campbell D K, Coker D F, Watanabe K, Taniguchi T, Neto A H C and Özyilmaz B 2015 Nat. Commun. 6 6647
[19] Zhu W, Yogeesh M N, Yang S, Aldave S H, Kim J S, Sonde S, Tao L, Lu N and Akinwande D 2015 Nano Lett. 15 1883
[20] Chen X, Wu Y, Wu Z, Han Y, Xu S, Wang L, Ye W, Han T, He Y, Cai Y and Wang N 2015 Nat. Nanotechnol. 6 7315
[21] Na J, Lee Y T, Lim J A, Hwang D K, Kim G T, Choi W K and Song Y W 2014 ACS Nano 8 11753
[22] Wang H, Wang X, Xia F, Wang L, Jiang H, Xia Q, Chin M L, Dubey M and Han S J 2014 Nano Lett. 14 6424
[23] Li W, Yang Y, Zhang G and Zhang Y W 2015 Nano Lett. 15 1691
[24] Park C M and Sohn H J 2007 Adv. Mater. 19 2465
[25] Wang L, He X, Li J, Sun W, Gao J, Guo J and Jiang C 2012 Angew. Chem. Int. Ed. 51 9034
[26] Kim Y, Park Y, Choi A, Choi N S, Kim J, Lee J, Ryu J H, Oh S M and Lee K T 2013 Adv. Mater. 25 3045
[27] Stan M C, Zamory J V, Passerini S, Nilges T and Winter M 2013 J. Mater. Chem. A 1 5293
[28] Sun J, Zheng G, Lee H W, Liu N, Wang H, Yao H, Yang W and Cui Y 2014 Nano Lett. 14 4573
[29] Zhou H, Cai Y, Zhang G and Zhang Y W 2016 J. Mater. Res. 31 3179
[30] Zare M, Rameshti B Z, Ghamsari F G and Asgari R 2017 Phys. Rev. B 95 045422
[31] Zhang J, Liu H J, Cheng L, Wei J, Liang J H, Fan D D, Shi J, Tang X F and Zhang Q J 2014 Sci. Rep. 4 6452
[32] Abbas A N, Liu B, Chen L, Ma Y, Cong S, Aroonyadet N, Köpf M, Nilges T and Zhou C 2015 ACS Nano 9 5618
[33] Suvansinpan N, Hussain F, Zhang G, Chiu C H, Cai Y and Zhang Y W 2016 Nanotechnology 27 065708
[34] Jiang J W and Park H S 2014 Nat. Phys. 5 4727
[35] Du Y, Maassen J, Wu W, Luo Z, Xu X and Ye P D 2016 Nano Lett. 16 6701
[36] Cai Y, Zhang G and Zhang Y W 2015 J. Phys. Chem. C 119 13929
[37] Gao J, Zhang G and Zhang Y W 2016 J. Am. Chem. Soc. 138 4763
[38] Ziman J M 1961 Electrons and Phonons The Theory of Transport Phenomena in Solids (Oxford:Oxford University Press)
[39] Zhu L, Zhang G and Li B 2014 Phys. Rev. B 90 214302
[40] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[41] Paolo G, Stefano B, Nicola B, et al. 2009 J. Phys.:Condens. Matter 21 395502
[42] Baroni S, de Gironcoli S, Dal Corso A and Giannozzi P 2001 Rev. Mod. Phys. 73 515
[43] Gonze X and Lee C 1997 Phys. Rev. B 55 10355
[44] Li W, Lindsay L, Broido D A, Stewart D A and Mingo N 2012 Phys. Rev. B 86 174307
[45] Li W, Carrete J, A. Katcho N and Mingo N 2014 Comput. Phys. Commun. 185 1747
[46] Tang X and Fultz B 2011 Phys. Rev. B 84 054303
[47] Togo A, Chaput L and Tanaka I 2015 Phys. Rev. B 91 094306
[48] Tadano T, Gohda Y and Tsuneyuki S 2014 J. Phys.:Condens. Matter 26 225402
[49] Wang J S, Wang J and Lü J T 2008 Eur. Phys. J. B 62 381
[50] Mingo N 2006 Phys. Rev. B 74 125402
[51] Yamamoto T and Watanabe K 2006 Phys. Rev. Lett. 96 255503
[52] Hong Y, Zhang J and Zeng X C 2016 J. Phys. Chem. C 120 26067
[53] Zhang J, Huang X, Yue Y, Wang J and Wang X 2011 Phys. Rev. B 84 235416
[54] Zhang J and Wang X 2013 Nanoscale 5 734
[55] Zhang J, Wang X and Xie H 2013 Phys. Lett. A 377 721
[56] Li C, Zhang J and Wang X 2013 Appl. Phys. A 112 677
[57] Zhang J, Wang X and Xie H 2013 Phys. Lett. A 377 2970
[58] Zhang J, Xu F, Hong Y, Xiong Q and Pan J 2015 RSC Adv. 5 89415
[59] Li M, Zhang J, Hu X and Yue Y 2015 Appl. Phys. A 119 415
[60] Qiu B and Ruan X 2009 Phys. Rev. B 80 165203
[61] Sevik C, Kinaci A, Haskins J B and Çaǧin T 2011 Phys. Rev. B 84 085409
[62] Jiang J W, Rabczuk T and Park H S 2015 Nanoscale 7 6059
[63] Stillinger F H and Weber T A 1985 Phys. Rev. B 31 5262
[64] Jiang J W and Zhou Y P 2017 arXiv:1704.03147[cond]
[65] Xu W, Zhu L, Cai Y, Zhang G and Li B 2015 J. Appl. Phys. 117 214308
[66] Gale J D and Rohl A L 2003 Mol. Simul. 29 291
[67] Shanno D F 1970 Math. Comput. 24 647
[68] Jiang J W 2015 Nanotechnology 26 315706
[69] Schelling P K, Phillpot S R and Keblinski P 2002 Phys. Rev. B 65 144306
[70] Cahill D G, Goodson K and Majumdar A 2001 J. Heat Transfer 124 223
[71] Xu Z and Buehler M 2012 J. Phys.:Condens. Matter 24 475305
[72] Zhang J, Wang Y and Wang X 2013 Nanoscale 5 11598
[73] Hong Y, Li L, Zeng X C and Zhang J 2015 Nanoscale 7 6286
[74] Liu B, Baimova J A, Reddy C D, Law A W K, Dmitriev S V, Wu H and Zhou K 2014 ACS Appl. Mater. Interfaces 6 18180
[75] Hong Y, Zhu C, Ju M, Zhang J and Zeng X C 2017 Phys. Chem. Chem. Phys. 19 6554
[76] Hong Y, Zhang J and Zeng X C 2016 Nanoscale 8 19211
[77] Hong Y, Zhang J and Zeng X C 2016 Phys. Chem. Chem. Phys. 18 24164
[78] Zhang J, Hong Y and Yue Y 2015 J. Appl. Phys. 117 134307
[79] Liu B, Meng F, Reddy C D, Baimova J A, Srikanth N, Dmitriev S V and Zhou K 2015 RSC Adv. 5 29193
[80] Wang X, Hong Y, Ma D and Zhang J 2017 J. Mater. Chem. C 5 5119
[81] Wang X, Zhang J, Chen Y and Chan P K L 2017 Phys. Chem. Chem. Phys. 19 15933
[82] Zhang J, Hong Y, Tong Z, Xiao Z, Bao H and Yue Y 2015 Phys. Chem. Chem. Phys. 17 23704
[83] Zhang J, Hong Y, Liu M, Yue Y, Xiong Q and Lorenzini G 2017 Int. J. Heat Mass Transfer 104 871
[84] Zhang J, Hong Y, Wang X, Yue Y, Xie D, Jiang J, Xiong Y and Li P 2017 J. Phys. Chem. C 121 10336
[85] Heremans J P, Dresselhaus M S, Bell L E and Morelli D T 2013 Nat. Nanotechnol. 8 471
[86] Ward A, Broido D A, Stewart D A and Deinzer G 2009 Phys. Rev. B 80 125203
[87] Garg J, Bonini N, Kozinsky B and Marzari N 2011 Phys. Rev. Lett. 106 045901
[88] Lindsay L, Broido D A and Mingo N 2010 Phys. Rev. B 82 115427
[89] Zhang X, Xie H, Hu M, Bao H, Yue S, Qin G and Su G 2014 Phys. Rev. B 89 054310
[90] Xie H, Hu M and Bao H 2014 Appl. Phys. Lett. 104 131906
[91] Qin G, Yan Q B, Qin Z, Yue S Y, Hu M and Su G 2015 Phys. Chem. Chem. Phys. 17 4854
[92] Zhu Z and Tománek D 2014 Phys. Rev. Lett. 112 176802
[93] Fujii Y, Akahama Y, Endo S, Narita S, Yamada Y and Shirane G 1982 Solid State Commun. 44 579
[94] Wei Q and Peng X 2014 Appl. Phys. Lett. 104 251915
[95] Carrete J, Mingo N and Curtarolo S 2014 Appl. Phys. Lett. 105 101907
[96] Medrano Sandonas L, Teich D, Gutierrez R, Lorenz T, Pecchia A, Seifert G and Cuniberti G 2016 J. Phys. Chem. C 120 18841
[97] Fei R, Faghaninia A, Soklaski R, Yan J A, Lo C and Yang L 2014 Nano Lett. 14 6393
[98] Ong Z Y, Cai Y, Zhang G and Zhang Y W 2014 J. Phys. Chem. C 118 25272
[99] Cai Y, Ke Q, Zhang G, Feng Y P, Shenoy V B and Zhang Y W 2015 Adv. Funct. Mater. 25 2230
[100] Liu T H and Chang C C 2015 Nanoscale 7 10648
[101] Hong Y, Zhang J, Huang X and Zeng X C 2015 Nanoscale 7 18716
[102] Wen X and Gang Z 2016 J. Phys.:Condens. Matter 28 175401
[103] Jiang J W 2015 Nanotechnology 26 055701
[104] Seol J H, Jo I, Moore A L, Lindsay L, Aitken Z H, Pettes M T, Li X, Yao Z, Huang R, Broido D, Mingo N, Ruoff R S and Shi L 2010 Science 328 213
[105] Mounet N and Marzari N 2005 Phys. Rev. B 71
[106] Gillen R, Mohr M, Thomsen C and Maultzsch J 2009 Phys. Rev. B 80 155418
[107] Gu X and Yang R 2015 J. Appl. Phys. 117 025102
[108] Liu X, Wood J D, Chen K S, Cho E and Hersam M C 2015 J. Phys. Chem. Lett. 6 773
[109] Gao J, Zhang G and Zhang Y W 2017 Nanoscale 9 4219
[110] Padilha J E, Fazzio A and da Silva A J R 2015 Phys. Rev. Lett. 114 066803
[111] Hashmi A, Farooq U and Hong J 2016 Curr. Appl. Phys. 16 318
[112] Zhang Y Y, Pei Q X, Mai Y W and Lai S K 2016 J. Phys. D:Appl. Phys. 49 465301
[113] Pei Q X, Zhang X, Ding Z, Zhang Y Y and Zhang Y W 2017 Phys. Chem. Chem. Phys. 19 17180
[114] Chen Y, Zhang Y, Cai K, Jiang J, Zheng J C, Zhao J and Wei N 2017 Carbon 117 399
[115] Zhang Y Y, Pei Q X, Jiang J W, Wei N and Zhang Y W 2016 Nanoscale 8 483
[116] Cai Y, Ke Q, Zhang G and Zhang Y W 2015 J. Phys. Chem. C 119 3102
[117] Cai Y, Ke Q, Zhang G, Yakobson B I and Zhang Y W 2016 J. Am. Chem. Soc. 138 10199
[118] Koenig S P, Doganov R A, Schmidt H, Neto A H C and Özyilmaz B 2014 Appl. Phys. Lett. 104 103106
[1] First-principles study of the bandgap renormalization and optical property of β-LiGaO2
Dangqi Fang(方党旗). Chin. Phys. B, 2023, 32(4): 047101.
[2] Prediction of lattice thermal conductivity with two-stage interpretable machine learning
Jinlong Hu(胡锦龙), Yuting Zuo(左钰婷), Yuzhou Hao(郝昱州), Guoyu Shu(舒国钰), Yang Wang(王洋), Minxuan Feng(冯敏轩), Xuejie Li(李雪洁), Xiaoying Wang(王晓莹), Jun Sun(孙军), Xiangdong Ding(丁向东), Zhibin Gao(高志斌), Guimei Zhu(朱桂妹), Baowen Li(李保文). Chin. Phys. B, 2023, 32(4): 046301.
[3] Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivity θ-phase TaN
Chao Wu(吴超), Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(4): 046502.
[4] Modeling of thermal conductivity for disordered carbon nanotube networks
Hao Yin(殷浩), Zhiguo Liu(刘治国), and Juekuan Yang(杨决宽). Chin. Phys. B, 2023, 32(4): 044401.
[5] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[6] Rational design of Fe/Co-based diatomic catalysts for Li-S batteries by first-principles calculations
Xiaoya Zhang(张晓雅), Yingjie Cheng(程莹洁), Chunyu Zhao(赵春宇), Jingwan Gao(高敬莞), Dongxiao Kan(阚东晓), Yizhan Wang(王义展), Duo Qi(齐舵), and Yingjin Wei(魏英进). Chin. Phys. B, 2023, 32(3): 036803.
[7] Single-layer intrinsic 2H-phase LuX2 (X = Cl, Br, I) with large valley polarization and anomalous valley Hall effect
Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), Yuan-Shuo Liu(刘元硕), Shuai Fu(傅帅),Xiao-Ning Cui(崔晓宁), Yi-Hao Wang(王易昊), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(3): 037306.
[8] Li2NiSe2: A new-type intrinsic two-dimensional ferromagnetic semiconductor above 200 K
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(3): 037501.
[9] Molecular dynamics study of interactions between edge dislocation and irradiation-induced defects in Fe–10Ni–20Cr alloy
Tao-Wen Xiong(熊涛文), Xiao-Ping Chen(陈小平), Ye-Ping Lin(林也平), Xin-Fu He(贺新福), Wen Yang(杨文), Wang-Yu Hu(胡望宇), Fei Gao(高飞), and Hui-Qiu Deng(邓辉球). Chin. Phys. B, 2023, 32(2): 020206.
[10] Formation of nanobubbles generated by hydrate decomposition: A molecular dynamics study
Zilin Wang(王梓霖), Liang Yang(杨亮), Changsheng Liu(刘长生), and Shiwei Lin(林仕伟). Chin. Phys. B, 2023, 32(2): 023101.
[11] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[12] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[13] Prediction of flexoelectricity in BaTiO3 using molecular dynamics simulations
Long Zhou(周龙), Xu-Long Zhang(张旭龙), Yu-Ying Cao(曹玉莹), Fu Zheng(郑富), Hua Gao(高华), Hong-Fei Liu(刘红飞), and Zhi Ma(马治). Chin. Phys. B, 2023, 32(1): 017701.
[14] First-principles study on β-GeS monolayer as high performance electrode material for alkali metal ion batteries
Meiqian Wan(万美茜), Zhongyong Zhang(张忠勇), Shangquan Zhao(赵尚泉), and Naigen Zhou(周耐根). Chin. Phys. B, 2022, 31(9): 096301.
[15] Effect of spatial heterogeneity on level of rejuvenation in Ni80P20 metallic glass
Tzu-Chia Chen, Mahyuddin KM Nasution, Abdullah Hasan Jabbar, Sarah Jawad Shoja, Waluyo Adi Siswanto, Sigiet Haryo Pranoto, Dmitry Bokov, Rustem Magizov, Yasser Fakri Mustafa, A. Surendar, Rustem Zalilov, Alexandr Sviderskiy, Alla Vorobeva, Dmitry Vorobyev, and Ahmed Alkhayyat. Chin. Phys. B, 2022, 31(9): 096401.
No Suggested Reading articles found!