Special Issue:
TOPICAL REVIEW — Thermal and thermoelectric properties of nano materials
|
TOPICAL REVIEW—Thermal and thermoelectric properties of nano materials |
Prev
Next
|
|
|
Thermal transport in phosphorene and phosphorene-based materials: A review on numerical studies |
Yang Hong(洪扬)1, Jingchao Zhang(张景超)2, Xiao Cheng Zeng(曾晓成)1 |
1 Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, USA; 2 Holland Computing Center, University of Nebraska-Lincoln, Lincoln, NE 68588, USA |
|
|
Abstract The recently discovered two-dimensional (2D) layered material phosphorene has attracted considerable interest as a promising p-type semiconducting material. In this article, we review the recent advances in numerical studies of the thermal properties of monolayer phosphorene and phosphorene-based heterostructures. We first briefly review the commonly used first-principles and molecular dynamics (MD) approaches to evaluate the thermal conductivity and interfacial thermal resistance of 2D phosphorene. Principles of different steady-state and transient MD techniques have been elaborated on in detail. Next, we discuss the anisotropic thermal transport of phosphorene in zigzag and armchair chiral directions. Subsequently, the in-plane and cross-plane thermal transport in phosphorene-based heterostructures such as phosphorene/silicon and phosphorene/graphene is summarized. Finally, the numerical research in the field of thermal transport in 2D phosphorene is highlighted along with our perspective of potentials and opportunities of 2D phosphorenes in electronic applications such as photodetectors, field-effect transistors, lithium ion batteries, sodium ion batteries, and thermoelectric devices.
|
Received: 18 September 2017
Revised: 11 October 2017
Accepted manuscript online:
|
PACS:
|
65.40.-b
|
(Thermal properties of crystalline solids)
|
|
65.80.-g
|
(Thermal properties of small particles, nanocrystals, nanotubes, and other related systems)
|
|
66.10.cd
|
(Thermal diffusion and diffusive energy transport)
|
|
66.70.-f
|
(Nonelectronic thermal conduction and heat-pulse propagation in solids;thermal waves)
|
|
Corresponding Authors:
Jingchao Zhang, Xiao Cheng Zeng
E-mail: zhang@unl.edu;xzeng1@unl.edu
|
Cite this article:
Yang Hong(洪扬), Jingchao Zhang(张景超), Xiao Cheng Zeng(曾晓成) Thermal transport in phosphorene and phosphorene-based materials: A review on numerical studies 2018 Chin. Phys. B 27 036501
|
[1] |
Zhang Y, Zheng Y, Rui K, Hng H H, Hippalgaonkar K, Xu J, Sun W, Zhu J, Yan Q and Huang W 2017 Small 13 1700661
|
[2] |
Ong Z Y, Zhang G and Zhang Y W 2014 J. Appl. Phys. 116 214505
|
[3] |
Cai Y, Zhang G and Zhang Y W 2014 Sci. Rep. 4 6677
|
[4] |
Li W, Zhang G and Zhang Y W 2014 J. Phys. Chem. C 118 22368
|
[5] |
Zhang S, Yang J, Xu R, Wang F, Li W, Ghufran M, Zhang Y W, Yu Z, Zhang G, Qin Q and Lu Y 2014 ACS Nano 8 9590
|
[6] |
Li L, Yu Y, Ye G J, Ge Q, Ou X, Wu H, Feng D, Chen X H and Zhang Y 2014 Nat. Nanotechnol. 9 372
|
[7] |
Churchill H O H and Jarillo-Herrero P 2014 Nat. Nanotechnol. 9 330
|
[8] |
Dhanabalan S C, Ponraj J S, Guo Z, Li S, Bao Q and Zhang H 2017 Adv. Sci. 4 1600305
|
[9] |
Yu X C, Zhang S L, Zeng H B and Wang Q J 2016 Nano Energy 25 34
|
[10] |
Lu J P, Yang J, Carvalho A, Liu H W, Lu Y R and Sow C H 2016 Accounts Chem. Res. 49 1806
|
[11] |
Eswaraiah V, Zeng Q S, Long Y and Liu Z 2016 Small 12 3480
|
[12] |
Lu J P, Carvalho A, Wu J, Liu H W, Tok E S, Neto A H C, Ozyilmaz B and Sow C H 2016 Adv. Mater. 28 4090
|
[13] |
Tan W C, Cai Y, Ng R J, Huang L, Feng X, Zhang G, Zhang Y W, Nijhuis C A, Liu X and Ang K W 2017 Adv. Mater. 29 1700503
|
[14] |
Prakash A, Cai Y, Zhang G, Zhang Y W and Ang K W 2017 Small 13 1602909
|
[15] |
Liu H, Neal A T, Zhu Z, Luo Z, Xu X, Tománek D and Ye P D 2014 ACS Nano 8 4033
|
[16] |
Ling Z P, Sakar S, Mathew S, Zhu J T, Gopinadhan K, Venkatesan T and Ang K W 2015 Sci. Rep. 5 18000
|
[17] |
Low T, Rodin A S, Carvalho A, Jiang Y, Wang H, Xia F and Castro Neto A H 2014 Phys. Rev. B 90 075434
|
[18] |
Doganov R A, O'Farrell E C T, Koenig S P, Yeo Y, Ziletti A, Carvalho A, Campbell D K, Coker D F, Watanabe K, Taniguchi T, Neto A H C and Özyilmaz B 2015 Nat. Commun. 6 6647
|
[19] |
Zhu W, Yogeesh M N, Yang S, Aldave S H, Kim J S, Sonde S, Tao L, Lu N and Akinwande D 2015 Nano Lett. 15 1883
|
[20] |
Chen X, Wu Y, Wu Z, Han Y, Xu S, Wang L, Ye W, Han T, He Y, Cai Y and Wang N 2015 Nat. Nanotechnol. 6 7315
|
[21] |
Na J, Lee Y T, Lim J A, Hwang D K, Kim G T, Choi W K and Song Y W 2014 ACS Nano 8 11753
|
[22] |
Wang H, Wang X, Xia F, Wang L, Jiang H, Xia Q, Chin M L, Dubey M and Han S J 2014 Nano Lett. 14 6424
|
[23] |
Li W, Yang Y, Zhang G and Zhang Y W 2015 Nano Lett. 15 1691
|
[24] |
Park C M and Sohn H J 2007 Adv. Mater. 19 2465
|
[25] |
Wang L, He X, Li J, Sun W, Gao J, Guo J and Jiang C 2012 Angew. Chem. Int. Ed. 51 9034
|
[26] |
Kim Y, Park Y, Choi A, Choi N S, Kim J, Lee J, Ryu J H, Oh S M and Lee K T 2013 Adv. Mater. 25 3045
|
[27] |
Stan M C, Zamory J V, Passerini S, Nilges T and Winter M 2013 J. Mater. Chem. A 1 5293
|
[28] |
Sun J, Zheng G, Lee H W, Liu N, Wang H, Yao H, Yang W and Cui Y 2014 Nano Lett. 14 4573
|
[29] |
Zhou H, Cai Y, Zhang G and Zhang Y W 2016 J. Mater. Res. 31 3179
|
[30] |
Zare M, Rameshti B Z, Ghamsari F G and Asgari R 2017 Phys. Rev. B 95 045422
|
[31] |
Zhang J, Liu H J, Cheng L, Wei J, Liang J H, Fan D D, Shi J, Tang X F and Zhang Q J 2014 Sci. Rep. 4 6452
|
[32] |
Abbas A N, Liu B, Chen L, Ma Y, Cong S, Aroonyadet N, Köpf M, Nilges T and Zhou C 2015 ACS Nano 9 5618
|
[33] |
Suvansinpan N, Hussain F, Zhang G, Chiu C H, Cai Y and Zhang Y W 2016 Nanotechnology 27 065708
|
[34] |
Jiang J W and Park H S 2014 Nat. Phys. 5 4727
|
[35] |
Du Y, Maassen J, Wu W, Luo Z, Xu X and Ye P D 2016 Nano Lett. 16 6701
|
[36] |
Cai Y, Zhang G and Zhang Y W 2015 J. Phys. Chem. C 119 13929
|
[37] |
Gao J, Zhang G and Zhang Y W 2016 J. Am. Chem. Soc. 138 4763
|
[38] |
Ziman J M 1961 Electrons and Phonons The Theory of Transport Phenomena in Solids (Oxford:Oxford University Press)
|
[39] |
Zhu L, Zhang G and Li B 2014 Phys. Rev. B 90 214302
|
[40] |
Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
|
[41] |
Paolo G, Stefano B, Nicola B, et al. 2009 J. Phys.:Condens. Matter 21 395502
|
[42] |
Baroni S, de Gironcoli S, Dal Corso A and Giannozzi P 2001 Rev. Mod. Phys. 73 515
|
[43] |
Gonze X and Lee C 1997 Phys. Rev. B 55 10355
|
[44] |
Li W, Lindsay L, Broido D A, Stewart D A and Mingo N 2012 Phys. Rev. B 86 174307
|
[45] |
Li W, Carrete J, A. Katcho N and Mingo N 2014 Comput. Phys. Commun. 185 1747
|
[46] |
Tang X and Fultz B 2011 Phys. Rev. B 84 054303
|
[47] |
Togo A, Chaput L and Tanaka I 2015 Phys. Rev. B 91 094306
|
[48] |
Tadano T, Gohda Y and Tsuneyuki S 2014 J. Phys.:Condens. Matter 26 225402
|
[49] |
Wang J S, Wang J and Lü J T 2008 Eur. Phys. J. B 62 381
|
[50] |
Mingo N 2006 Phys. Rev. B 74 125402
|
[51] |
Yamamoto T and Watanabe K 2006 Phys. Rev. Lett. 96 255503
|
[52] |
Hong Y, Zhang J and Zeng X C 2016 J. Phys. Chem. C 120 26067
|
[53] |
Zhang J, Huang X, Yue Y, Wang J and Wang X 2011 Phys. Rev. B 84 235416
|
[54] |
Zhang J and Wang X 2013 Nanoscale 5 734
|
[55] |
Zhang J, Wang X and Xie H 2013 Phys. Lett. A 377 721
|
[56] |
Li C, Zhang J and Wang X 2013 Appl. Phys. A 112 677
|
[57] |
Zhang J, Wang X and Xie H 2013 Phys. Lett. A 377 2970
|
[58] |
Zhang J, Xu F, Hong Y, Xiong Q and Pan J 2015 RSC Adv. 5 89415
|
[59] |
Li M, Zhang J, Hu X and Yue Y 2015 Appl. Phys. A 119 415
|
[60] |
Qiu B and Ruan X 2009 Phys. Rev. B 80 165203
|
[61] |
Sevik C, Kinaci A, Haskins J B and Çaǧin T 2011 Phys. Rev. B 84 085409
|
[62] |
Jiang J W, Rabczuk T and Park H S 2015 Nanoscale 7 6059
|
[63] |
Stillinger F H and Weber T A 1985 Phys. Rev. B 31 5262
|
[64] |
Jiang J W and Zhou Y P 2017 arXiv:1704.03147[cond]
|
[65] |
Xu W, Zhu L, Cai Y, Zhang G and Li B 2015 J. Appl. Phys. 117 214308
|
[66] |
Gale J D and Rohl A L 2003 Mol. Simul. 29 291
|
[67] |
Shanno D F 1970 Math. Comput. 24 647
|
[68] |
Jiang J W 2015 Nanotechnology 26 315706
|
[69] |
Schelling P K, Phillpot S R and Keblinski P 2002 Phys. Rev. B 65 144306
|
[70] |
Cahill D G, Goodson K and Majumdar A 2001 J. Heat Transfer 124 223
|
[71] |
Xu Z and Buehler M 2012 J. Phys.:Condens. Matter 24 475305
|
[72] |
Zhang J, Wang Y and Wang X 2013 Nanoscale 5 11598
|
[73] |
Hong Y, Li L, Zeng X C and Zhang J 2015 Nanoscale 7 6286
|
[74] |
Liu B, Baimova J A, Reddy C D, Law A W K, Dmitriev S V, Wu H and Zhou K 2014 ACS Appl. Mater. Interfaces 6 18180
|
[75] |
Hong Y, Zhu C, Ju M, Zhang J and Zeng X C 2017 Phys. Chem. Chem. Phys. 19 6554
|
[76] |
Hong Y, Zhang J and Zeng X C 2016 Nanoscale 8 19211
|
[77] |
Hong Y, Zhang J and Zeng X C 2016 Phys. Chem. Chem. Phys. 18 24164
|
[78] |
Zhang J, Hong Y and Yue Y 2015 J. Appl. Phys. 117 134307
|
[79] |
Liu B, Meng F, Reddy C D, Baimova J A, Srikanth N, Dmitriev S V and Zhou K 2015 RSC Adv. 5 29193
|
[80] |
Wang X, Hong Y, Ma D and Zhang J 2017 J. Mater. Chem. C 5 5119
|
[81] |
Wang X, Zhang J, Chen Y and Chan P K L 2017 Phys. Chem. Chem. Phys. 19 15933
|
[82] |
Zhang J, Hong Y, Tong Z, Xiao Z, Bao H and Yue Y 2015 Phys. Chem. Chem. Phys. 17 23704
|
[83] |
Zhang J, Hong Y, Liu M, Yue Y, Xiong Q and Lorenzini G 2017 Int. J. Heat Mass Transfer 104 871
|
[84] |
Zhang J, Hong Y, Wang X, Yue Y, Xie D, Jiang J, Xiong Y and Li P 2017 J. Phys. Chem. C 121 10336
|
[85] |
Heremans J P, Dresselhaus M S, Bell L E and Morelli D T 2013 Nat. Nanotechnol. 8 471
|
[86] |
Ward A, Broido D A, Stewart D A and Deinzer G 2009 Phys. Rev. B 80 125203
|
[87] |
Garg J, Bonini N, Kozinsky B and Marzari N 2011 Phys. Rev. Lett. 106 045901
|
[88] |
Lindsay L, Broido D A and Mingo N 2010 Phys. Rev. B 82 115427
|
[89] |
Zhang X, Xie H, Hu M, Bao H, Yue S, Qin G and Su G 2014 Phys. Rev. B 89 054310
|
[90] |
Xie H, Hu M and Bao H 2014 Appl. Phys. Lett. 104 131906
|
[91] |
Qin G, Yan Q B, Qin Z, Yue S Y, Hu M and Su G 2015 Phys. Chem. Chem. Phys. 17 4854
|
[92] |
Zhu Z and Tománek D 2014 Phys. Rev. Lett. 112 176802
|
[93] |
Fujii Y, Akahama Y, Endo S, Narita S, Yamada Y and Shirane G 1982 Solid State Commun. 44 579
|
[94] |
Wei Q and Peng X 2014 Appl. Phys. Lett. 104 251915
|
[95] |
Carrete J, Mingo N and Curtarolo S 2014 Appl. Phys. Lett. 105 101907
|
[96] |
Medrano Sandonas L, Teich D, Gutierrez R, Lorenz T, Pecchia A, Seifert G and Cuniberti G 2016 J. Phys. Chem. C 120 18841
|
[97] |
Fei R, Faghaninia A, Soklaski R, Yan J A, Lo C and Yang L 2014 Nano Lett. 14 6393
|
[98] |
Ong Z Y, Cai Y, Zhang G and Zhang Y W 2014 J. Phys. Chem. C 118 25272
|
[99] |
Cai Y, Ke Q, Zhang G, Feng Y P, Shenoy V B and Zhang Y W 2015 Adv. Funct. Mater. 25 2230
|
[100] |
Liu T H and Chang C C 2015 Nanoscale 7 10648
|
[101] |
Hong Y, Zhang J, Huang X and Zeng X C 2015 Nanoscale 7 18716
|
[102] |
Wen X and Gang Z 2016 J. Phys.:Condens. Matter 28 175401
|
[103] |
Jiang J W 2015 Nanotechnology 26 055701
|
[104] |
Seol J H, Jo I, Moore A L, Lindsay L, Aitken Z H, Pettes M T, Li X, Yao Z, Huang R, Broido D, Mingo N, Ruoff R S and Shi L 2010 Science 328 213
|
[105] |
Mounet N and Marzari N 2005 Phys. Rev. B 71
|
[106] |
Gillen R, Mohr M, Thomsen C and Maultzsch J 2009 Phys. Rev. B 80 155418
|
[107] |
Gu X and Yang R 2015 J. Appl. Phys. 117 025102
|
[108] |
Liu X, Wood J D, Chen K S, Cho E and Hersam M C 2015 J. Phys. Chem. Lett. 6 773
|
[109] |
Gao J, Zhang G and Zhang Y W 2017 Nanoscale 9 4219
|
[110] |
Padilha J E, Fazzio A and da Silva A J R 2015 Phys. Rev. Lett. 114 066803
|
[111] |
Hashmi A, Farooq U and Hong J 2016 Curr. Appl. Phys. 16 318
|
[112] |
Zhang Y Y, Pei Q X, Mai Y W and Lai S K 2016 J. Phys. D:Appl. Phys. 49 465301
|
[113] |
Pei Q X, Zhang X, Ding Z, Zhang Y Y and Zhang Y W 2017 Phys. Chem. Chem. Phys. 19 17180
|
[114] |
Chen Y, Zhang Y, Cai K, Jiang J, Zheng J C, Zhao J and Wei N 2017 Carbon 117 399
|
[115] |
Zhang Y Y, Pei Q X, Jiang J W, Wei N and Zhang Y W 2016 Nanoscale 8 483
|
[116] |
Cai Y, Ke Q, Zhang G and Zhang Y W 2015 J. Phys. Chem. C 119 3102
|
[117] |
Cai Y, Ke Q, Zhang G, Yakobson B I and Zhang Y W 2016 J. Am. Chem. Soc. 138 10199
|
[118] |
Koenig S P, Doganov R A, Schmidt H, Neto A H C and Özyilmaz B 2014 Appl. Phys. Lett. 104 103106
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|