Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(3): 036801    DOI: 10.1088/1674-1056/27/3/036801
Special Issue: TOPICAL REVIEW — Thermal and thermoelectric properties of nano materials
TOPICAL REVIEW—Thermal and thermoelectric properties of nano materials Prev   Next  

Surface effects on the thermal conductivity of silicon nanowires

Hai-Peng Li(李海鹏)1, Rui-Qin Zhang(张瑞勤)2
1 School of Physical Science and Technology, China University of Mining and Technology, Xuzhou 221116, China;
2 Department of Physics, City University of Hong Kong, Hong Kong SAR, China
Abstract  Thermal transport in silicon nanowires (SiNWs) has recently attracted considerable attention due to their potential applications in energy harvesting and generation and thermal management. The adjustment of the thermal conductivity of SiNWs through surface effects is a topic worthy of focus. In this paper, we briefly review the recent progress made in this field through theoretical calculations and experiments. We come to the conclusion that surface engineering methods are feasible and effective methods for adjusting nanoscale thermal transport and may foster further advancements in this field.
Keywords:  silicon nanowires      thermal conductivity      phonon transport      surface effect  
Received:  08 October 2017      Revised:  23 November 2017      Accepted manuscript online: 
PACS:  68.65.-k (Low-dimensional, mesoscopic, nanoscale and other related systems: structure and nonelectronic properties)  
  44.10.+i (Heat conduction)  
  63.22.-m (Phonons or vibrational states in low-dimensional structures and nanoscale materials)  
  65.80.-g (Thermal properties of small particles, nanocrystals, nanotubes, and other related systems)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11504418), China Scholarship Council (Grant No. 201706425053), Basic Research Program in Shenzhen, China (Grant No. JCYJ20160229165210666), and the Fundamental Research Funds for the Central Universities of China (Grant No. 2015XKMS075).
Corresponding Authors:  Hai-Peng Li, Rui-Qin Zhang     E-mail:  haipli@cumt.edu.cn;aprqz@cityu.edu.hk

Cite this article: 

Hai-Peng Li(李海鹏), Rui-Qin Zhang(张瑞勤) Surface effects on the thermal conductivity of silicon nanowires 2018 Chin. Phys. B 27 036801

[1] Snyder G J and Toberer E S 2008 Nat. Mater. 7 105
[2] Yang N, Xu X, Zhang G and Li B 2012 AIP Adv. 2 041410
[3] Ni X, Leek M L, Wang J S, Feng Y P and Li B 2011 Phys. Rev. B 83 045408
[4] Sales B C 2002 Science 295 1248
[5] Miao T T, Song M X, Ma W G and Zhang X 2011 Chin. Phys. B 20 056501
[6] Dresselhaus M S, Chen G, Tang M Y, Yang R G, Lee H, Wang D Z, Ren Z F, Fleurial J P and Gogna P 2007 Adv. Mater. 19 1043
[7] Dmitriev A V and Zvyagin I P 2010 Phys. Usp. 53 789
[8] Ying P J, Li X, Wang Y C, Yang J, Fu C G, Zhang W Q, Zhao X B and Zhu T J 2017 Adv. Funct. Mater. 27 1604145
[9] Davis B L and Hussein M I 2014 Phys. Rev. Lett. 112 055505
[10] Teo B K and Sun X H 2007 Chem. Rev. 107 1454
[11] Hochbaum A I, Chen R, Delgado R D, Liang W, Garnett E C, Najarian M, Majumdar A and Yang P 2008 Nature 451 163
[12] Boukai A I, Bunimovich Y, Tahir-Kheli J, Yu J K, Goddard W A Ⅲ and Heath J R 2008 Nature 451 168
[13] Chen J, Zhang G and Li B 2011 J. Chem. Phys. 135 204705
[14] Chen J, Zhang G and Li B 2010 Nano Lett. 10 3978
[15] Li H P, Sarkar A D and Zhang R Q 2011 Europhys. Lett. 96 56007
[16] Li H P and Zhang R Q 2014 Europhys. Lett. 105 56003
[17] Zhang Y, Bi K, Chen W, Chen M and Chen Y 2014 ECS Trans. 60 1159
[18] Yang N, Zhang G and Li B 2008 Nano Lett. 8 276
[19] Liu L and Chen X 2010 J. Appl. Phys. 107 033501
[20] Mingo N, Yang L, Li D and Majumdar A 2003 Nano Lett. 3 1713
[21] Murphy K F, Piccione B, Zanjani M B, Lukes J R and Gianola D S 2014 Nano Lett. 14 3785
[22] Ponomareva I, Srivastava D and Menon M 2007 Nano Lett. 7 1155
[23] Kwon S, Wingert M C, Zheng J, Xiang J and Chen R 2016 Nanoscale 8 13155
[24] Markussen T, Jauho A P and Brandbyge M 2009 Phys. Rev. Lett. 103 055502
[25] Ali A, Chen Y, Vasirajuand V and Vaddiraju S 2017 Nanotechnology 28 282001
[26] Kim W 2011 Mater. Res. Innov. 15 375
[27] Schierning G 2014 Phys. Status Solidi A 211 1235
[28] Zhang G and Zhang Y W 2013 Phys. Status Solidi RRL 7 754
[29] Zhang G and Li B 2010 Nanoscale 2 1058
[30] Glassbrenner C J and Slack G A 1964 Phys. Rev. 134 A1058
[31] Inyushkin A V, Taldenkov A N, Gibin A M, Gusev A V and Pohl H J 2004 Phys. Stat. Sol. 1 2995
[32] Tiwari M D and Agrawal B K 1971 Phys. Rev. B 4 3527
[33] Volz S G and Chen G 1999 Appl. Phys. Lett. 75 2056
[34] Schelling P K, Phillpot S R and Keblinski P 2002 Phys. Rev. B 65 144306
[35] Sellan D P, Landry E S, Turney J E, McGaughey A J H and Amon C H 2010 Phys. Rev. B 81 214305
[36] Li X, Maute K, Dunn M L and Yang R 2010 Phys. Rev. B 81 245318
[37] Donadio D and Galli G 2010 Nano Lett. 10 847
[38] Abs da Cruz C, Termentzidis K, Hantrenne P and Kleber X 2011 J. Appl. Phys. 110 034309
[39] Chen Y, Li D, Lukes J R and Majumdar A 2005 J. Heat Transfer 127 1129
[40] Bong V N S and Wong B T 2015 AIP Conference Proceedings 1674 020017
[41] Markussen T, Jauho A P and Brandbyge M 2008 Nano Lett. 8 3771
[42] Markussen T, Jauho A P and Brandbyge M 2009 Phys. Rev. B 79 035415
[43] Liangruksa M and Puri I K 2011 J. Appl. Phys. 109 113501
[44] Mingo N 2003 Phys. Rev. B 68 113308
[45] Mingo N and Broido D A 2004 Phys. Rev. Lett. 93 246106
[46] Li DY, Wu Y Y, Kim P, Shi L, Yang P D and Majumdar A 2003 Appl. Phys. Lett. 83 2934
[47] Li DY, Wu Y, Fan R, Yang P D and Majumdar A 2003 Appl. Phys. Lett. 83 3186
[48] Martin P N, Aksamija Z, Popand E and Ravaioli U 2010 Nano Lett. 10 1120
[49] Malhotra A and Maldovan M 2016 Sci. Rep. 6 25818
[50] Xie G F, Guo Y, Li B H, Yang L W, Zhang K W, Tang M H and Zhang G 2013 Phys. Chem. Chem. Phys. 15 14647
[51] Kukita K and Kamakura Y 2013 J. Appl. Phys. 114 154312
[52] Lacroix D, Joulain K, Terris D and Lemonnier D 2006 Appl. Phys. Lett. 89 103104
[53] Zhang R Q, Lifshitz Y, Ma D D D, Zhao Y L, Frauenheim T, Lee S T and Tong S Y 2005 J. Chem.Phys. 123 144703
[54] Zhang R Q, Costa J and Bertran E 1996 Phys. Rev. B 53 7847
[55] Yang X B and Zhang R Q 2009 Appl. Phys. Lett. 94 113101
[56] Guo C S, Luo L B, Yuan G D, Yang X B, Zhang R Q, Zhang W J and Lee S T 2009 Angew. Chem., Int. Ed. 48 9896
[57] Xu H, Yang X B, Zhang C, Lu A J and Zhang R Q 2011 Appl. Phys. Lett. 98 073115
[58] Pan Y, Tao Y, Qin G Z, Fedoryshyn Y, Raja S N, Hu M, Degen C L and Poulikakos D 2016 Nano Lett. 16 6364
[59] Lim J, Hippalgaonkar K, Andrews S C, Majumdar A and Yang P 2012 Nano Lett. 12 2475
[60] Moore A L, Saha S K, Prasher R S and Li S 2008 Appl. Phys. Lett. 93 083112
[61] Wang Z, Nin Z H, Zhao R J, Chen M H, Bi K D and Chen Y F 2011 Physica B 406 2515
[62] Martin P, Aksamija Z, Pop E and Ravaioli U 2009 Phys. Rev. Lett. 102 125503
[63] Malhotra A and Maldovan M 2016 Sci. Rep. 6 25818
[64] Carrete J, Gallego L J and Varela L M 2011 Phys. Rev. B 84 075403
[65] Kim H, Park Y H, Kim I, Kim J, Choi H J and Kim W 2011 Appl. Phys. A 104 23
[66] Sadhu J and Sinha S 2011 Phys. Rev. B 84 115450
[67] Maurer L N, Aksamija Z, Ramayya E B, Davoody A H and Knezevic I 2015 Appl. Phys. Lett. 106 133108
[68] Park I, Li Z, Pisano A P and Williams R S 2007 Nano Lett. 7 3106
[69] Lu A J, Zhang R Q and Lee S T 2008 Appl. Phys. Lett. 92 203109
[70] Scott S A, Peng W, Kiefer A M, Jiang H, Knezevic I, Savage D E, Eriksson M A and Lagally M G 2009 ACS Nano 3 1683
[71] Liu M, Ma Y and Wang R Y 2015 ACS Nano 9 12079
[72] Markussen T, Jauho A P and Brandbyge M 2009 Phys. Rev. Lett. 103 055502
[73] Hu M, Giapis K P, Goicochea J V, Zhang X L and Poulikakos D 2011 Nano Lett. 11 618
[74] Blandre E, Chaput L, Merabia S, Lacroix D and Termentzidis K 2015 Phys. Rev. B 91 115404
[75] Kandemir A, Ay F, Perkgöz N K and Sevik C 2016 J. Electron. Mater. 45 1594
[76] Sansoz F 2011 Nano Lett. 11 5378
[77] Donadio D and Galli G 2009 Phys. Rev. Lett. 102 195901
[78] Liu X J, Zhang G, Pei Q X and Zhang Y W 2014 Sci. China Tech. Sci. 57 699
[79] Chen J, Zhang G and Li B 2009 Appl. Phys. Lett. 95 073117
[80] Zhong J X and Stocks G M 2006 Nano Lett. 6 128
[81] Wang Y, Li B and Xie G 2013 RSC Adv. 3 26074
[82] Hu M, Giapis K P, Goicochea J V, Zhang X L and Poulikakos D 2011 Nano Lett. 11 618
[83] Pan Y, Hong G, Raja S N, Zimmermann S, Tiwari M K and Poulikakos D 2015 Appl. Phys. Lett. 106 093102
[84] Tan X J, Liu G Q, Shao H Z, Xu J T, Yu B, Jiang H C and Jiang J 2017 Appl. Phys. Lett. 110 143903
[85] Wingert M C, Kwon S, Hu M, Poulikakos D, Xiang J and Chen R K 2015 Nano Lett. 15 2605
[86] Yang L, Yang Y, Zhang Q, Zhang Y, Jiang Y F, Guan Z, Gerboth M, Yang J K, Chen Y F, Walker D G, Xu T T and Li D Y 2016 Nanoscale 8 17895
[87] Neogi S, Reparaz J S, Pereira L F C, Graczykowski B, Wagner M R, Sledzinska M, Shchepetov A, Prunnila M, Ahopelto J, Sotomayor-Torres C M and Donadio D 2015 ACS Nano 9 3820
[88] Massoud A M, Bluet J M, Lacatena V, Haras M, Robillard J F and Chapuis P O 2017 Appl. Phys. Lett. 111 063106
[89] Chien S K, Yang Y T and Chen C K 2011 Appl. Phys. Lett. 98 033107
[90] Pei Q X, Sha Z D and Zhang Y W 2011 Carbon 49 4752
[91] Padgett C W and Brenner D W 2004 Nano Lett. 4 1051
[92] Padgett C W, Shenderova O and Brenner D W 2006 Nano Lett. 6 1827
[93] Jiang J W, Park H S and Rabczuk T 2013 Nanoscale 5 11035
[94] Liu X J, Zhang G, Pei Q X and Zhang Y W 2016 Materials Today:Proceedings 3 2759
[95] Wang Q, Wang X, Guo R and Huang B 2017 J. Phys. Chem. C 121 15472
[1] Prediction of lattice thermal conductivity with two-stage interpretable machine learning
Jinlong Hu(胡锦龙), Yuting Zuo(左钰婷), Yuzhou Hao(郝昱州), Guoyu Shu(舒国钰), Yang Wang(王洋), Minxuan Feng(冯敏轩), Xuejie Li(李雪洁), Xiaoying Wang(王晓莹), Jun Sun(孙军), Xiangdong Ding(丁向东), Zhibin Gao(高志斌), Guimei Zhu(朱桂妹), Baowen Li(李保文). Chin. Phys. B, 2023, 32(4): 046301.
[2] Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivity θ-phase TaN
Chao Wu(吴超), Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(4): 046502.
[3] Modeling of thermal conductivity for disordered carbon nanotube networks
Hao Yin(殷浩), Zhiguo Liu(刘治国), and Juekuan Yang(杨决宽). Chin. Phys. B, 2023, 32(4): 044401.
[4] Low-temperature heat transport of the zigzag spin-chain compound SrEr2O4
Liguo Chu(褚利国), Shuangkui Guang(光双魁), Haidong Zhou(周海东), Hong Zhu(朱弘), and Xuefeng Sun(孙学峰). Chin. Phys. B, 2022, 31(8): 087505.
[5] Impact of thermostat on interfacial thermal conductance prediction from non-equilibrium molecular dynamics simulations
Song Hu(胡松), C Y Zhao(赵长颖), and Xiaokun Gu(顾骁坤). Chin. Phys. B, 2022, 31(5): 056301.
[6] Research status and performance optimization of medium-temperature thermoelectric material SnTe
Pan-Pan Peng(彭盼盼), Chao Wang(王超), Lan-Wei Li(李岚伟), Shu-Yao Li(李淑瑶), and Yan-Qun Chen(陈艳群). Chin. Phys. B, 2022, 31(4): 047307.
[7] Advances in thermoelectric (GeTe)x(AgSbTe2)100-x
Hongxia Liu(刘虹霞), Xinyue Zhang(张馨月), Wen Li(李文), and Yanzhong Pei(裴艳中). Chin. Phys. B, 2022, 31(4): 047401.
[8] Effect of carbon nanotubes addition on thermoelectric properties of Ca3Co4O9 ceramics
Ya-Nan Li(李亚男), Ping Wu(吴平), Shi-Ping Zhang(张师平), Yi-Li Pei(裴艺丽), Jin-Guang Yang(杨金光), Sen Chen(陈森), and Li Wang(王立). Chin. Phys. B, 2022, 31(4): 047203.
[9] Investigating the thermal conductivity of materials by analyzing the temperature distribution in diamond anvils cell under high pressure
Caihong Jia(贾彩红), Min Cao(曹敏), Tingting Ji(冀婷婷), Dawei Jiang(蒋大伟), and Chunxiao Gao(高春晓). Chin. Phys. B, 2022, 31(4): 040701.
[10] Lattice thermal conduction in cadmium arsenide
R F Chinnappagoudra, M D Kamatagi, N R Patil, and N S Sankeshwar. Chin. Phys. B, 2022, 31(11): 116301.
[11] Unusual thermodynamics of low-energy phonons in the Dirac semimetal Cd3As2
Zhen Wang(王振), Hengcan Zhao(赵恒灿), Meng Lyu(吕孟), Junsen Xiang(项俊森), Qingxin Dong(董庆新), Genfu Chen(陈根富), Shuai Zhang(张帅), and Peijie Sun(孙培杰). Chin. Phys. B, 2022, 31(10): 106501.
[12] Accurate determination of anisotropic thermal conductivity for ultrathin composite film
Qiu-Hao Zhu(朱秋毫), Jing-Song Peng(彭景凇), Xiao Guo(郭潇), Ru-Xuan Zhang(张如轩), Lei Jiang(江雷), Qun-Feng Cheng(程群峰), and Wen-Jie Liang(梁文杰). Chin. Phys. B, 2022, 31(10): 108102.
[13] Probing thermal properties of vanadium dioxide thin films by time-domain thermoreflectance without metal film
Qing-Jian Lu(陆青鑑), Min Gao(高敏), Chang Lu(路畅), Fei Long(龙飞), Tai-Song Pan(潘泰松), and Yuan Lin(林媛). Chin. Phys. B, 2021, 30(9): 096801.
[14] Erratum to “Designing thermal demultiplexer: Splitting phonons by negative mass and genetic algorithm optimization”
Yu-Tao Tan(谭宇涛), Lu-Qin Wang(王鲁钦), Zi Wang(王子), Jiebin Peng(彭洁彬), and Jie Ren(任捷). Chin. Phys. B, 2021, 30(9): 099902.
[15] Two-dimensional square-Au2S monolayer: A promising thermoelectric material with ultralow lattice thermal conductivity and high power factor
Wei Zhang(张伟), Xiao-Qiang Zhang(张晓强), Lei Liu(刘蕾), Zhao-Qi Wang(王朝棋), and Zhi-Guo Li(李治国). Chin. Phys. B, 2021, 30(7): 077405.
No Suggested Reading articles found!