Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(12): 127303    DOI: 10.1088/1674-1056/27/12/127303
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Enhanced performance of a solar cell based on a layer-by-layer self-assembled luminescence down-shifting layer of core-shell quantum dots

Ni Liu(刘妮)1, Shu-Xin Li(李淑鑫)2, Ying-Chun Ye(叶迎春)1, Yan-Li Yao(姚延立)1
1 College of Aeronautical Engineering, Binzhou University, Binzhou 256603, China;
2 Anhui Key Laboratory of Nanomaterials and Technology and Key Laboratory of Materials Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
Abstract  

In this paper, core-shell quantum dots (QDs) with two polar surface functional groups (ZnSe/ZnS-COOH QDs and ZnSe/ZnS-NH2 QDs) are synthesized in an aqueous phase. Photoluminescence (PL) and absorption spectra clearly indicate luminescence down-shifting (LDS) properties. On the basis of QDs, surface functional group multilayer LDS films (M-LDSs) are fabricated through an electrostatic layer-by-layer (LBL) self-assembly method. The PL intensity increases linearly with the number of bilayers, showing a regular and uniform film growth. When the M-LDS is placed on the surface of a Si-based solar cell as an optical conversion layer for the first time, the external quantum efficiency (EQE) and short-circuit current density (Jsc) notably increases for the LDS process. The EQE response improves in a wavelength region extending from the UV region to the blue region, and its maximum increase reaches more than 15% between 350 nm and 460 nm.

Keywords:  two-surface functional group      LBL self-assembly      LDS  
Received:  06 August 2018      Revised:  17 September 2018      Accepted manuscript online: 
PACS:  73.61.Ga (II-VI semiconductors)  
  73.21.La (Quantum dots)  
  85.30.-z (Semiconductor devices)  
Fund: 

Project supported by the Natural Science Foundation of Shandong Province, China (Grant No. ZR2017PF011), the National Natural Science Foundation of China (Grant No. E020701), and the Doctoral Scientific Research Foundation of Binzhou University, China (Grant No. 2014Y10).

Corresponding Authors:  Ni Liu     E-mail:  liuni106@bzu.edu.cn

Cite this article: 

Ni Liu(刘妮), Shu-Xin Li(李淑鑫), Ying-Chun Ye(叶迎春), Yan-Li Yao(姚延立) Enhanced performance of a solar cell based on a layer-by-layer self-assembled luminescence down-shifting layer of core-shell quantum dots 2018 Chin. Phys. B 27 127303

[1] Van der Ende B M, Aarts L and Meijerink A 2009 Phys. Chem. Chem. Phys. 11 11081
[2] Bach U, Lupo D, Comte P, Moser J E, Weissörtel F, Salbeck J, Spreitzer H and Grätzel M 1998 Nature 395 583
[3] Chen F X, Wang L S and Xu W Y 2013 Chin. Phys. B 22 045202
[4] Sergii K, Shuchi G, Olga Z, Aleksandar V, Stephen V K, Fu H Y, Fan Z Y, Eric C H K, Wang C F, Wey Y T and Andrey L R 2014 J. Phys. Chem. C 118 16393
[5] Green M A, Emery K, Hishikawa Y and Warta W 2009 Prog. Photovolt: Res. Appl. 17 85
[6] Strümpel C, McCann M, Beaucarne G, Arkhipov V, Slaoui A, Svrcek V, Canizo C and Tobias I 2007 Sol. Energy. Mater. Sol. Cells 91 238
[7] Ourida O, Trigaud T, Ratier B, Belkaid M S, Galmiche L and Audebert P 2017 Synth. Metals 234 106
[8] Shalav A, Richards B S and Green M A 2007 Sol. Energy. Mater. Sol. Cells 91 829
[9] Gholizadeh A, Reyhani A, Parvin P and Mortazavi S Z 2017 J. Phys. D: Appl. Phys. 50 185501
[10] Valerini D, Cretí A, Lomascolo M, Manna L, Cingolani R and Anni M 2005 Phys. Rev. B 71 235409
[11] Jaehyun P and Kim S W 2011 J. Mater. Chem. 21 3745
[12] Clare E R, Marc C, Kimihiro S, Eunkeu O, Gary K, Alexander L E, Alan H H and James B D 2017 Opt. Mater. Express 7 1871
[13] Shcherbatyuk G V, Inman R H, Wang C, Winston R and Ghosh S 2010 Appl. Phys. Lett. 96 191901
[14] Huang C Y, Wang D Y, Wang C H, Chen Y T, Wang Y T, Jiang Y T, Yang Y J, Chen C C and Chen Y F 2010 ACS Nano 4 5849
[15] Pi X D, Li Q, Li D S and Yang D R 2011 Sol. Energy Mater. Sol. Cells 95 2941
[16] Taylor U, Anastasiia S, Sergei P, Andres O, Ievgen L, Jessica G, Miroslaw B, Karen F, Edda S, Egelhaaf H J and Christoph J B 2016 Sol. Energy Mater. Sol. Cells 155 1
[17] Zhang X J, Zhou C H, Zang S P, Shen H B, Dai P P, Zhang X T and Li L S 2015 ACS Appl. Mater. Interfaces 7 14770
[18] Liu X P, Zhang X J, Wu R L, Shen H B, Zhou C H, Zhang X T, Guo L J and Li L S 2017 Chem. Eng. J. 324 19
[19] Liu N, Zhou W Z, Xu L, Tong L, Zhou J, Su W N, Yu Y, Xu J and Ma Z Y 2012 J. Non-Cryst. Solids 358 2353
[20] Park J Y, Lee C G, Seo H W, Jeong D W, Kim M Y, Kim W B and Kim B S 2018 Appl. Surf. Sci. 429 225
[21] Jwon B H, Jang H S, Yoo H S, Kim S W, Kang D S, Maeng S, Jang D S, Kim H and Jeon D Y 2011 J. Mater. Chem. 21 12812
[22] Liu N, Xu L, Wang H Y, Xu J, Su W N, Li W, Ma Z Y and Chen K J 2014 Can. J. Phys. 92 862
[1] Quantum fields presentation and generating functions of symplectic Schur functions and symplectic universal characters
Denghui Li(李登慧), Fei Wang(王菲), and Zhaowen Yan(颜昭雯). Chin. Phys. B, 2022, 31(8): 080202.
[2] Effects of heterogeneous adoption thresholds on contact-limited social contagions
Dan-Dan Zhao(赵丹丹), Wang-Xin Peng(彭王鑫), Hao Peng(彭浩), and Wei Wang(王伟). Chin. Phys. B, 2022, 31(6): 068906.
[3] Generation of elliptical isolated attosecond pulse from oriented H2+ in a linearly polarized laser field
Yun-He Xing(邢云鹤), Jun Zhang(张军), Xiao-Xin Huo(霍晓鑫), Qing-Yun Xu(徐清芸), and Xue-Shen Liu(刘学深). Chin. Phys. B, 2022, 31(4): 043203.
[4] Speedup of self-propelled helical swimmers in a long cylindrical pipe
Ji Zhang(张骥), Kai Liu(刘凯), and Yang Ding(丁阳). Chin. Phys. B, 2022, 31(1): 014702.
[5] Dynamic measurement of beam divergence angle of different fields of view of scanning lidar
Qing-Yan Li(李青岩), Shi-Yu Yan(闫诗雨), Bin Zhang(张斌), and Chun-Hui Wang(王春晖). Chin. Phys. B, 2021, 30(2): 024205.
[6] Superchiral fields generated by nanostructures and their applications for chiral sensing
Huizhen Zhang(张慧珍), Weixuan Zhang(张蔚暄), Saisai Hou(侯赛赛), Rongyao Wang(王荣瑶), and Xiangdong Zhang(张向东). Chin. Phys. B, 2021, 30(11): 113303.
[7] Role of potential on high-order harmonic generation from atoms irradiated by bichromatic counter-rotating circularly polarized laser fields
Xu-Xu Shen(申许许), Jun Wang(王俊), Fu-Ming Guo(郭福明), Ji-Gen Chen(陈基根), Yun-Jun Yang(杨玉军). Chin. Phys. B, 2020, 29(8): 083201.
[8] Controlling electron collision by counterrotating circular two-color laser fields
Baoqin Li(李宝琴), Xianghe Ren(任向河), Jingtao Zhang(张敬涛). Chin. Phys. B, 2020, 29(4): 043202.
[9] Controlling paths of high-order harmonic generation by orthogonal two-color fields
Ze-Hui Ma(马泽慧), Cai-Ping Zhang(张彩萍), Jun-Lin Ma(马俊琳), Xiang-Yang Miao(苗向阳). Chin. Phys. B, 2020, 29(4): 043201.
[10] The second Hopf bifurcation in lid-driven square cavity
Tao Wang(王涛), Tiegang Liu(刘铁钢), Zheng Wang(王正). Chin. Phys. B, 2020, 29(3): 030503.
[11] Comparative study on atomic ionization in bicircular laser fields by length and velocity gauges S-matrix theory
Hong Xia(夏宏), Xin-Yan Jia(贾欣燕), Xiao-Lei Hao(郝小雷), Li Guo(郭丽), Dai-He Fan(樊代和), Gen-Bai Chu(储根柏), Jing Chen(陈京). Chin. Phys. B, 2020, 29(2): 023204.
[12] Trajectory analysis of few-cycle strong field ionization in two-color circularly polarized fields
Yan Huang(黄燕), Chaochao Qin(秦朝朝), Yizhu Zhang(张逸竹), Xincheng Wang(王新成), Tian-Min Yan(阎天民), Yuhai Jiang(江玉海). Chin. Phys. B, 2019, 28(9): 093202.
[13] Efficient solver for time-dependent Schrödinger equation with interaction between atoms and strong laser field
Sheng-Peng Zhou(周胜鹏), Ai-Hua Liu(刘爱华), Fang Liu(刘芳), Chun-Cheng Wang(王春成), Da-Jun Ding(丁大军). Chin. Phys. B, 2019, 28(8): 083101.
[14] Investigation on the drives of the poloidal flow in the ohmic and biased electrode experiments
Yi Yu(余羿), Tao Lan(兰涛), Min Xu(许敏), Yizhi Wen(闻一之). Chin. Phys. B, 2019, 28(3): 035202.
[15] Angle-resolved spectra of the direct above-threshold ionization of diatomic molecule in IR+XUV laser fields
Shang Shi(石尚), Fa-Cheng Jin(金发成), Bing-Bing Wang(王兵兵). Chin. Phys. B, 2019, 28(2): 023202.
No Suggested Reading articles found!