Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(11): 114401    DOI: 10.1088/1674-1056/27/11/114401
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Effect of graphene/ZnO hybrid transparent electrode on characteristics of GaN light-emitting diodes

Jun-Tian Tan(谭竣天)1, Shu-Fang Zhang(张淑芳)2, Ming-Can Qian(钱明灿)1, Hai-Jun Luo(罗海军)1,3, Fang Wu(吴芳)1, Xing-Ming Long(龙兴明)3, Liang Fang(方亮)1, Da-Peng Wei(魏大鹏)4, Bao-Shan Hu(胡宝山)5
1 State Key Laboratory of Mechanical Transmission, Chongqing Key Laboratory of Soft Condensed Matter Physics and Smart Materials, College of Physics, Chongqing University, Chongqing 400044, China;
2 College of Software, Chongqing College of Electronic Engineering, Chongqing 401331, China;
3 College of Physics and Electronic Engineering, Chongqing Normal University, Chongqing 400047, China;
4 Chongqing Engineering Research Center of Graphene Film Manufacturing, Chongqing 401331, China;
5 College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China
Abstract  

In order to reduce the Schottky barrier height and sheet resistance between graphene (Gr) and the p-GaN layers in GaN-based light-emitting diodes (LEDs), conductive transparent thin films with large work function are required to be inserted between Gr and p-GaN layers. In the present work, three kinds of transparent conductive oxide (TCO) zinc oxide (ZnO) films, Al-, Ga-, and In-doped ZnO (AZO, GZO, and IZO), are introduced as a bridge layer between Gr and p-GaN, respectively. The influence of different combinations of Gr/ZnO hybrid transparent conducting layers (TCLs) on the optical and thermal characteristics of the GaN-LED was investigated by the finite element method through COMSOL software. It is found that both the TCL transmittance and the surface temperature of the LED chip reduce with the increase in Gr and ZnO thickness. In order to get the transmittance of the Gr/ZnO hybrid TCL higher than 80%, the appropriate combination of Gr/ZnO compound electrode should be a single layer of Gr with ZnO no thicker than 400 nm (1L Gr/400-nm ZnO), 2L Gr/300-nm ZnO, 3L Gr/200-nm ZnO, or 4L Gr/100-nm ZnO. The LEDs with hybrid TCLs consisting of 1L Gr/300-nm AZO, 2L Gr/300-nm GZO, and 2L Gr/300-nm IZO have good performance, among which the one with 1L Gr/300-nm GZO has the best thermal property. Typically, the temperature of LEDs with 1L Gr/300-nm GZO hybrid TCLs will drop by about 7 K compared with that of the LEDs with a TCL without ZnO film.

Keywords:  finite element methods      light-emitting diodes      graphene      ZnO  
Received:  30 March 2018      Revised:  20 July 2018      Accepted manuscript online: 
PACS:  44.05.+e (Analytical and numerical techniques)  
  42.25.Dd (Wave propagation in random media)  
Fund: 

Project supported by the National High Technology Research and Development Program of China (Grant No. 2015AA034801), the Foundation of the State Key Laboratory of Mechanical Transmission of Chongqing University, China (Grant Nos. SKLMT-ZZKT-2017M15 and SKLM-ZZKT-2015Z16), the National Natural Science Foundation of China (Grant Nos. 11544010, 11374359, 11304405, and 1155305), the Natural Science Foundation of Chongqing, China (Grant Nos. cstc2015jcyjA50035 and cstc2015jcyjA1660), the Fundamental Research Funds for the Central Universities, China (Grant Nos. 2018CDJDWL0011, 106112017CDJQJ328839, 106112016CDJZR288805, and 106112015CDJXY300002), and the Sharing Fund of Large-Scale Equipment of Chongqing University, China (Grant Nos. 201612150094, 201712150005, 201712150006, and 201712150010).

Corresponding Authors:  Shu-Fang Zhang, Hai-Jun Luo, Liang Fang     E-mail:  roseymcn2000@foxmail.com;lhj19830330@126.com;lfang@cqu.edu.cn

Cite this article: 

Jun-Tian Tan(谭竣天), Shu-Fang Zhang(张淑芳), Ming-Can Qian(钱明灿), Hai-Jun Luo(罗海军), Fang Wu(吴芳), Xing-Ming Long(龙兴明), Liang Fang(方亮), Da-Peng Wei(魏大鹏), Bao-Shan Hu(胡宝山) Effect of graphene/ZnO hybrid transparent electrode on characteristics of GaN light-emitting diodes 2018 Chin. Phys. B 27 114401

[1] Schubert E F and Kim J K 2005 Science 308 1274
[2] Bach U, Lupo D, Comte P, Moser J E, Weissörtel F, Salbeck J, Spreitzer H and Grätzel M 1998 Nature 395 583
[3] Wang X, Zhi L and Müllen K 2001 Nano Lett. 1 323
[4] Ahmad A, Asghar S and Alsaedi A 2014 Chin. Phys. B 23 074401
[5] Qian M C, Zhang S F, Luo H J, Long X M, Wu F, Fang L and Wei D P 2017 Chin. Phys. B 26 104402
[6] Nair R R, Blake P, Grigorenko A N, Novoselov K S, Booth T J, Stauber T, Peres N M R and Geim A K 2008 Science 320 1308
[7] Xing J J, Wu Z H, Xie H Q, Wang Y Y, Li Y H and Mao J H 2017 Chin. Phys. B 26 104401
[8] Youn D H, Yu Y J, Choi H K, Kim S H, Choi S Y and Choi C G 2013 Nanotechnology 24 075202
[9] Han J Q and Liu Q S 2013 Chin. Phys. Lett. 30 054301
[10] Jo G, Choe M, Cho C Y, Kim J H, Park W, Lee S, Hong W K, Kim T W, Park S J, Hong B H, Kahng Y H and Lee T 2010 Nanotechnology 21 175201
[11] Chandramohan S, Ko K B, Yang J H, Ryu B D, Katharria Y S, Kim T Y, Cho B J and Hong C H 2014 J. Appl. Phys. 115 054503
[12] Zhang Y Y, Li X, Wang L C, Yi X Y, Wu D H, Zhu H W and Wang G H 2012 Nanoscale 19 5852
[13] Amjad H, Syed T M D and Taqi A C 2012 Chin. Phys. Lett. 29 114705
[14] Zhang P F, Qiao C H, Feng X X, Huang T, Li N, Fan C Y and Wang Y J 2017 Acta Phys. Sin. 66 244210(in Chinese)
[15] Sun J and Liu W Q 2012 Acta Phys. Sin. 61 124401(in Chinese)
[16] Zhao J T, Feng G Y, Yang H M, Tang C, Chen N J and Zhou S H 2012 Acta Phys. Sin. 61 084208(in Chinese)
[17] Park T Y, Choi Y S, Kang J W, Jeong J H, Park S J, Jeon D M, Kim J W and Kim Y C 2010 Appl. Phys. Lett. 96 051124
[18] Lin J Y, Pei Y L, Zhuo Y, Chen Z M, Hu R Q, Cai G S and Wang G 2016 Chin. Phys. B 25 118506
[19] Lameche N, Bouzid S, Hamici M, Messaci S and Yahiaoui K 2016 Optik 127 9663
[20] Yan Q X, Zhang S F, Long X M, Luo H J, Wu F, Fang L, Wei D P and Liao M Y 2016 Chin. Phys. Lett. 33 078501
[21] Xue S J, Fang L, Long X M, Lu Y, Wu F, Li W J, Zuo J Q and Zhang S F 2014 Chin. Phys. Lett. 31 028501
[22] Xu K, Xu C, Deng J, Zhu Y X, Guo W L, Mao M M, Zheng L and Sun J 2013 Appl. Phys. Lett. 102 162102
[23] Wang Z, Dong G, Yang Y T and Li J W 2012 Acta Phys. Sin. 61 054102(in Chinese)
[24] Seo T H, Chae S J, Kim B K, Shin G U, Lee Y H and Suh E K 2012 Appl. Phys. Express 5 115101
[25] Sheu J, Lu Y S, Lee M L, Lai W C, Kuo C H and Tun C J 2007 Appl. Phys. Lett. 90 263511
[26] Ryu J H, Choi D H and Kim S J 2002 Int. J. Heat Mass Tran. 45 2823
[27] Xu Y S, Wu B, Zheng Y Q and Fan J T 2013 Chin. Phys. Lett. 30 064704
[28] Sheu G J, Hwu F S, Chen J C, Sheu J K and Lai W C 2008 J. Electrochem. Soc. 155 H836
[29] Hwu F S, Chen J C, Tu S H, Sheu G J, Chen H I and Sheu J K et al. 2010 J. Electrochem. Soc. 157 H31
[30] Niu C Y, Qi H, Huang X, Ruan L M, Wang W and Tan H P 2015 Chin. Phys. B 24 114401
[31] Song W, Soon Y K, Sung M, Jung M W, Kim S J, Min B K, Kang M A, Kim S H, Lim J and An K S 2015 Sci. Rep. 4 4064
[32] Khrapach I, Withers F, Bointon T H, Polyushkin D K, Barnes W L, Russo S and Craciun M F et al. 2012 Adv. Mater. 24 2844
[33] Han X, Chen Y, Zhu H, Preston C, Wan J, Fang Z and Hu L 2013 Nanotechnology 24 205304
[34] Li X S, Zhu Y W, Cai W W, Borysiak M, Han B, Chen D, Piner R D, Colombo L and Ruoff R S 2009 Nano Lett. 9 4359
[35] Kim J S, Yang S C and Bae B S 2010 Chem. Mater. 11 3549
[36] Horng R H, Lin R C, Chiang Y C, Chuang B H, Hu H L and Hsu C P 2012 Microelectron. Reliab. 52 818
[37] Cheng X T and Liang X G 2017 Chin. Phys. B 26 120505
[38] Nirmalraj P N, Lutz T, Kumar S, Duesberg G S and Boland J J 2011 Nano Lett. 11 16
[1] Polarization Raman spectra of graphene nanoribbons
Wangwei Xu(许望伟), Shijie Sun(孙诗杰), Muzi Yang(杨慕紫), Zhenliang Hao(郝振亮), Lei Gao(高蕾), Jianchen Lu(卢建臣), Jiasen Zhu(朱嘉森), Jian Chen(陈建), and Jinming Cai(蔡金明). Chin. Phys. B, 2023, 32(4): 046803.
[2] Spectral shift of solid high-order harmonics from different channels in a combined laser field
Dong-Dong Cao(曹冬冬), Xue-Fei Pan(潘雪飞), Jun Zhang(张军), and Xue-Shen Liu(刘学深). Chin. Phys. B, 2023, 32(3): 034204.
[3] Spin- and valley-polarized Goos-Hänchen-like shift in ferromagnetic mass graphene junction with circularly polarized light
Mei-Rong Liu(刘美荣), Zheng-Fang Liu(刘正方), Ruo-Long Zhang(张若龙), Xian-Bo Xiao(肖贤波), and Qing-Ping Wu(伍清萍). Chin. Phys. B, 2023, 32(3): 037301.
[4] Graphene metasurface-based switchable terahertz half-/quarter-wave plate with a broad bandwidth
Xiaoqing Luo(罗小青), Juan Luo(罗娟), Fangrong Hu(胡放荣), and Guangyuan Li(李光元). Chin. Phys. B, 2023, 32(2): 027801.
[5] Ion migration in metal halide perovskite QLEDs and its inhibition
Yuhui Dong(董宇辉), Danni Yan(严丹妮), Shuai Yang(杨帅), Naiwei Wei(魏乃炜),Yousheng Zou(邹友生), and Haibo Zeng(曾海波). Chin. Phys. B, 2023, 32(1): 018507.
[6] Correlated states in alternating twisted bilayer-monolayer-monolayer graphene heterostructure
Ruirui Niu(牛锐锐), Xiangyan Han(韩香岩), Zhuangzhuang Qu(曲壮壮), Zhiyu Wang(王知雨), Zhuoxian Li(李卓贤), Qianling Liu(刘倩伶), Chunrui Han(韩春蕊), and Jianming Lu(路建明). Chin. Phys. B, 2023, 32(1): 017202.
[7] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[8] High-quality CdS quantum dots sensitized ZnO nanotube array films for superior photoelectrochemical performance
Qian-Qian Gong(宫倩倩), Yun-Long Zhao(赵云龙), Qi Zhang(张奇), Chun-Yong Hu(胡春永), Teng-Fei Liu(刘腾飞), Hai-Feng Zhang(张海峰), Guang-Chao Yin(尹广超), and Mei-Ling Sun(孙美玲). Chin. Phys. B, 2022, 31(9): 098103.
[9] Dual-channel tunable near-infrared absorption enhancement with graphene induced by coupled modes of topological interface states
Zeng-Ping Su(苏增平), Tong-Tong Wei(魏彤彤), and Yue-Ke Wang(王跃科). Chin. Phys. B, 2022, 31(8): 087804.
[10] Recent advances of defect-induced spin and valley polarized states in graphene
Yu Zhang(张钰), Liangguang Jia(贾亮广), Yaoyao Chen(陈瑶瑶), Lin He(何林), and Yeliang Wang(王业亮). Chin. Phys. B, 2022, 31(8): 087301.
[11] Precisely controlling the twist angle of epitaxial MoS2/graphene heterostructure by AFM tip manipulation
Jiahao Yuan(袁嘉浩), Mengzhou Liao(廖梦舟), Zhiheng Huang(黄智恒), Jinpeng Tian(田金朋), Yanbang Chu(褚衍邦), Luojun Du(杜罗军), Wei Yang(杨威), Dongxia Shi(时东霞), Rong Yang(杨蓉), and Guangyu Zhang(张广宇). Chin. Phys. B, 2022, 31(8): 087302.
[12] Longitudinal conductivity in ABC-stacked trilayer graphene under irradiating of linearly polarized light
Guo-Bao Zhu(朱国宝), Hui-Min Yang(杨慧敏), and Jie Yang(杨杰). Chin. Phys. B, 2022, 31(8): 088102.
[13] Dynamically tunable multiband plasmon-induced transparency effect based on graphene nanoribbon waveguide coupled with rectangle cavities system
Zi-Hao Zhu(朱子豪), Bo-Yun Wang(王波云), Xiang Yan(闫香), Yang Liu(刘洋), Qing-Dong Zeng(曾庆栋), Tao Wang(王涛), and Hua-Qing Yu(余华清). Chin. Phys. B, 2022, 31(8): 084210.
[14] Valley-dependent transport in strain engineering graphene heterojunctions
Fei Wan(万飞), X R Wang(王新茹), L H Liao(廖烈鸿), J Y Zhang(张嘉颜),M N Chen(陈梦南), G H Zhou(周光辉), Z B Siu(萧卓彬), Mansoor B. A. Jalil, and Yuan Li(李源). Chin. Phys. B, 2022, 31(7): 077302.
[15] Thermionic electron emission in the 1D edge-to-edge limit
Tongyao Zhang(张桐耀), Hanwen Wang(王汉文), Xiuxin Xia(夏秀鑫), Chengbing Qin(秦成兵), and Xiaoxi Li(李小茜). Chin. Phys. B, 2022, 31(5): 058504.
No Suggested Reading articles found!