ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Effect of graphene/ZnO hybrid transparent electrode on characteristics of GaN light-emitting diodes |
Jun-Tian Tan(谭竣天)1, Shu-Fang Zhang(张淑芳)2, Ming-Can Qian(钱明灿)1, Hai-Jun Luo(罗海军)1,3, Fang Wu(吴芳)1, Xing-Ming Long(龙兴明)3, Liang Fang(方亮)1, Da-Peng Wei(魏大鹏)4, Bao-Shan Hu(胡宝山)5 |
1 State Key Laboratory of Mechanical Transmission, Chongqing Key Laboratory of Soft Condensed Matter Physics and Smart Materials, College of Physics, Chongqing University, Chongqing 400044, China;
2 College of Software, Chongqing College of Electronic Engineering, Chongqing 401331, China;
3 College of Physics and Electronic Engineering, Chongqing Normal University, Chongqing 400047, China;
4 Chongqing Engineering Research Center of Graphene Film Manufacturing, Chongqing 401331, China;
5 College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China |
|
|
Abstract In order to reduce the Schottky barrier height and sheet resistance between graphene (Gr) and the p-GaN layers in GaN-based light-emitting diodes (LEDs), conductive transparent thin films with large work function are required to be inserted between Gr and p-GaN layers. In the present work, three kinds of transparent conductive oxide (TCO) zinc oxide (ZnO) films, Al-, Ga-, and In-doped ZnO (AZO, GZO, and IZO), are introduced as a bridge layer between Gr and p-GaN, respectively. The influence of different combinations of Gr/ZnO hybrid transparent conducting layers (TCLs) on the optical and thermal characteristics of the GaN-LED was investigated by the finite element method through COMSOL software. It is found that both the TCL transmittance and the surface temperature of the LED chip reduce with the increase in Gr and ZnO thickness. In order to get the transmittance of the Gr/ZnO hybrid TCL higher than 80%, the appropriate combination of Gr/ZnO compound electrode should be a single layer of Gr with ZnO no thicker than 400 nm (1L Gr/400-nm ZnO), 2L Gr/300-nm ZnO, 3L Gr/200-nm ZnO, or 4L Gr/100-nm ZnO. The LEDs with hybrid TCLs consisting of 1L Gr/300-nm AZO, 2L Gr/300-nm GZO, and 2L Gr/300-nm IZO have good performance, among which the one with 1L Gr/300-nm GZO has the best thermal property. Typically, the temperature of LEDs with 1L Gr/300-nm GZO hybrid TCLs will drop by about 7 K compared with that of the LEDs with a TCL without ZnO film.
|
Received: 30 March 2018
Revised: 20 July 2018
Accepted manuscript online:
|
PACS:
|
44.05.+e
|
(Analytical and numerical techniques)
|
|
42.25.Dd
|
(Wave propagation in random media)
|
|
Fund: Project supported by the National High Technology Research and Development Program of China (Grant No. 2015AA034801), the Foundation of the State Key Laboratory of Mechanical Transmission of Chongqing University, China (Grant Nos. SKLMT-ZZKT-2017M15 and SKLM-ZZKT-2015Z16), the National Natural Science Foundation of China (Grant Nos. 11544010, 11374359, 11304405, and 1155305), the Natural Science Foundation of Chongqing, China (Grant Nos. cstc2015jcyjA50035 and cstc2015jcyjA1660), the Fundamental Research Funds for the Central Universities, China (Grant Nos. 2018CDJDWL0011, 106112017CDJQJ328839, 106112016CDJZR288805, and 106112015CDJXY300002), and the Sharing Fund of Large-Scale Equipment of Chongqing University, China (Grant Nos. 201612150094, 201712150005, 201712150006, and 201712150010). |
Corresponding Authors:
Shu-Fang Zhang, Hai-Jun Luo, Liang Fang
E-mail: roseymcn2000@foxmail.com;lhj19830330@126.com;lfang@cqu.edu.cn
|
Cite this article:
Jun-Tian Tan(谭竣天), Shu-Fang Zhang(张淑芳), Ming-Can Qian(钱明灿), Hai-Jun Luo(罗海军), Fang Wu(吴芳), Xing-Ming Long(龙兴明), Liang Fang(方亮), Da-Peng Wei(魏大鹏), Bao-Shan Hu(胡宝山) Effect of graphene/ZnO hybrid transparent electrode on characteristics of GaN light-emitting diodes 2018 Chin. Phys. B 27 114401
|
[1] |
Schubert E F and Kim J K 2005 Science 308 1274
|
[2] |
Bach U, Lupo D, Comte P, Moser J E, Weissörtel F, Salbeck J, Spreitzer H and Grätzel M 1998 Nature 395 583
|
[3] |
Wang X, Zhi L and Müllen K 2001 Nano Lett. 1 323
|
[4] |
Ahmad A, Asghar S and Alsaedi A 2014 Chin. Phys. B 23 074401
|
[5] |
Qian M C, Zhang S F, Luo H J, Long X M, Wu F, Fang L and Wei D P 2017 Chin. Phys. B 26 104402
|
[6] |
Nair R R, Blake P, Grigorenko A N, Novoselov K S, Booth T J, Stauber T, Peres N M R and Geim A K 2008 Science 320 1308
|
[7] |
Xing J J, Wu Z H, Xie H Q, Wang Y Y, Li Y H and Mao J H 2017 Chin. Phys. B 26 104401
|
[8] |
Youn D H, Yu Y J, Choi H K, Kim S H, Choi S Y and Choi C G 2013 Nanotechnology 24 075202
|
[9] |
Han J Q and Liu Q S 2013 Chin. Phys. Lett. 30 054301
|
[10] |
Jo G, Choe M, Cho C Y, Kim J H, Park W, Lee S, Hong W K, Kim T W, Park S J, Hong B H, Kahng Y H and Lee T 2010 Nanotechnology 21 175201
|
[11] |
Chandramohan S, Ko K B, Yang J H, Ryu B D, Katharria Y S, Kim T Y, Cho B J and Hong C H 2014 J. Appl. Phys. 115 054503
|
[12] |
Zhang Y Y, Li X, Wang L C, Yi X Y, Wu D H, Zhu H W and Wang G H 2012 Nanoscale 19 5852
|
[13] |
Amjad H, Syed T M D and Taqi A C 2012 Chin. Phys. Lett. 29 114705
|
[14] |
Zhang P F, Qiao C H, Feng X X, Huang T, Li N, Fan C Y and Wang Y J 2017 Acta Phys. Sin. 66 244210(in Chinese)
|
[15] |
Sun J and Liu W Q 2012 Acta Phys. Sin. 61 124401(in Chinese)
|
[16] |
Zhao J T, Feng G Y, Yang H M, Tang C, Chen N J and Zhou S H 2012 Acta Phys. Sin. 61 084208(in Chinese)
|
[17] |
Park T Y, Choi Y S, Kang J W, Jeong J H, Park S J, Jeon D M, Kim J W and Kim Y C 2010 Appl. Phys. Lett. 96 051124
|
[18] |
Lin J Y, Pei Y L, Zhuo Y, Chen Z M, Hu R Q, Cai G S and Wang G 2016 Chin. Phys. B 25 118506
|
[19] |
Lameche N, Bouzid S, Hamici M, Messaci S and Yahiaoui K 2016 Optik 127 9663
|
[20] |
Yan Q X, Zhang S F, Long X M, Luo H J, Wu F, Fang L, Wei D P and Liao M Y 2016 Chin. Phys. Lett. 33 078501
|
[21] |
Xue S J, Fang L, Long X M, Lu Y, Wu F, Li W J, Zuo J Q and Zhang S F 2014 Chin. Phys. Lett. 31 028501
|
[22] |
Xu K, Xu C, Deng J, Zhu Y X, Guo W L, Mao M M, Zheng L and Sun J 2013 Appl. Phys. Lett. 102 162102
|
[23] |
Wang Z, Dong G, Yang Y T and Li J W 2012 Acta Phys. Sin. 61 054102(in Chinese)
|
[24] |
Seo T H, Chae S J, Kim B K, Shin G U, Lee Y H and Suh E K 2012 Appl. Phys. Express 5 115101
|
[25] |
Sheu J, Lu Y S, Lee M L, Lai W C, Kuo C H and Tun C J 2007 Appl. Phys. Lett. 90 263511
|
[26] |
Ryu J H, Choi D H and Kim S J 2002 Int. J. Heat Mass Tran. 45 2823
|
[27] |
Xu Y S, Wu B, Zheng Y Q and Fan J T 2013 Chin. Phys. Lett. 30 064704
|
[28] |
Sheu G J, Hwu F S, Chen J C, Sheu J K and Lai W C 2008 J. Electrochem. Soc. 155 H836
|
[29] |
Hwu F S, Chen J C, Tu S H, Sheu G J, Chen H I and Sheu J K et al. 2010 J. Electrochem. Soc. 157 H31
|
[30] |
Niu C Y, Qi H, Huang X, Ruan L M, Wang W and Tan H P 2015 Chin. Phys. B 24 114401
|
[31] |
Song W, Soon Y K, Sung M, Jung M W, Kim S J, Min B K, Kang M A, Kim S H, Lim J and An K S 2015 Sci. Rep. 4 4064
|
[32] |
Khrapach I, Withers F, Bointon T H, Polyushkin D K, Barnes W L, Russo S and Craciun M F et al. 2012 Adv. Mater. 24 2844
|
[33] |
Han X, Chen Y, Zhu H, Preston C, Wan J, Fang Z and Hu L 2013 Nanotechnology 24 205304
|
[34] |
Li X S, Zhu Y W, Cai W W, Borysiak M, Han B, Chen D, Piner R D, Colombo L and Ruoff R S 2009 Nano Lett. 9 4359
|
[35] |
Kim J S, Yang S C and Bae B S 2010 Chem. Mater. 11 3549
|
[36] |
Horng R H, Lin R C, Chiang Y C, Chuang B H, Hu H L and Hsu C P 2012 Microelectron. Reliab. 52 818
|
[37] |
Cheng X T and Liang X G 2017 Chin. Phys. B 26 120505
|
[38] |
Nirmalraj P N, Lutz T, Kumar S, Duesberg G S and Boland J J 2011 Nano Lett. 11 16
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|