Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(11): 114215    DOI: 10.1088/1674-1056/27/11/114215
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Surface plasmon polariton at the interface of dielectric and graphene medium using Kerr effect

Bakhtawar1, Muhammad Haneef1, B A Bacha2, H Khan1, M Atif1
1 Lab of Theoretical Physics, Department of Physics, Hazara University Mansehra 21300, Pakistan;
2 Department of Physics, University of Malakand, Dir KP, Pakistan
Abstract  

We theoretically investigate the control of surface plasmon polariton (SPP) generated at the interface of dielectric and graphene medium under Kerr nonlinearity. The controlled Kerr nonlinear signal of probe light beam in a dielectric medium is used to generate SPPs at the interface of dielectric and graphene medium. The positive, negative absorption, and dispersion properties of SPPs are modified and controlled by the control and Kerr fields. A large amplification (negative absorption) is noted for SPPs under the Kerr nonlinearity. The normal/anomalous slope of dispersion and propagation length of SPPs is modified and controlled with Kerr nonlinearity. This leads to significant variation in slow and fast SPP propagation. The controlled slow and fast SPP propagation may predict significant applications in nano-photonics, optical tweezers, photovoltaic devices, plasmonster, and sensing technology.

Keywords:  surface plasmon polariton      Kerr nonlinearity      graphene  
Received:  04 June 2018      Revised:  06 August 2018      Accepted manuscript online: 
PACS:  42.65.-k (Nonlinear optics)  
  42.50.-p (Quantum optics)  
  42.50.Nn (Quantum optical phenomena in absorbing, amplifying, dispersive and conducting media; cooperative phenomena in quantum optical systems)  
  42.65.Hw (Phase conjugation; photorefractive and Kerr effects)  
Corresponding Authors:  Muhammad Haneef     E-mail:  haneef.theoretician@gmail.com

Cite this article: 

Bakhtawar, Muhammad Haneef, B A Bacha, H Khan, M Atif Surface plasmon polariton at the interface of dielectric and graphene medium using Kerr effect 2018 Chin. Phys. B 27 114215

[1] Farmani A, Mir A and Sharifpour Z 2018 Appl. Surf. Sci. 453 358
[2] Humayun K and Haneef M 2018 Can. J. Phys. 96 98
[3] Humayun K, Haneef M and Bakhtawar 2018 Chin. Phys. B 27 014201
[4] Pu M, Yao N, Hu C, Xin X, Zhao Z, Wang C and Luo X 2010 Opt. Express 18 21030
[5] Humayun K and Haneef M 2017 Laser Phys. 27 055201
[6] Haneef M, Mohammad S, Akbar J, Arif S, Zahir M and Humayun K2012 Chin. Phys. Lett. 29 073201
[7] Rahman A, Ahmad I, Afaq A and Haneef M 2011 Chin. Phys. Lett. 28 063301
[8] Farmani A, Yavarian M, Alighanbari A, Miri M and Sheikhi M H 2017 Appl. Opt. 56 8931
[9] Pines D 1956 Rev. Mod. Phys. 28 184
[10] Wood R W 1902 Philos. Mag. 4 396
[11] Ritchie R H 1957 Phys. Rev. 106 874
[12] Zayatsa A V, Smolyaninovb I I and Alexei A 2005 Phys. Rep. 408 131
[13] Gramotnev D K and Bozhevolnyi S I 2010 Nat. Photonics 4 83
[14] Haynes C L, McFarl A D and VanDuyne R P 2005 Anal. Chem. 77 338A
[15] Agranovich V M and Mills D L 1982 Surface Polaritons-Electromagnetic Waves at Surfaces and Interfaces (Amsterdam:NorthHolland)
[16] Raether H 1988 Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Berlin:Springer-Verlag)
[17] Boardman A D 1982 Electromagnetic Surface Modes (New York:Wiley)
[18] Boisde G and Harmer A 1996 Chemical and Biochemical Sensing with Optical Fibers and Waveguides (Boston:Arthech House)
[19] Ponath H E and Stegeman G I 1991 Nonlinear Surface Electromagnetic Phenomena (Amsterdam:North-Holland)
[20] Qin C, Xiaohua S, Yong M and Jin H 2012 Plasmonics (Chap. 20) (KimK Y Ed.) (Croatia:InTech)
[21] Pohl D W and Courjon D 1993 Near Field Optics (Netherlands:Kluwer)
[22] Reddick R C, Warmack R. J and Ferrel T L 1989 Phys. Rev. B 39 767
[23] Courjon D, Sarayeddine K and Spajer M 1989 Opt. Commun. 71 23
[24] Fornel F D, Goudonnet J P, Salomon L and Lesniewska E 1989 Proc. SPIE 1139 77
[25] Marti O, Bielefeldt H, Hecht B, Herminhaus S, Leiderer P and MlynekJ 1993 Opt. Commun. 96 225
[26] Adam P M, Salomon L, Fornel F D and Goudonnet J P 1993 Phys. Rev. B 48 2680
[27] Dawson P, Fornel F D and Goudonnet J P 1994 Phys. Rev. Lett. 72 2927
[28] Tsai D P, Kovasc J, Wang Z, Moskovits M, Shalaev V M, Suh J S andBotet R 1994 Phys. Rev. Lett. 72 1994
[29] Bozhevolnyi S I, Smolyaninov I I and Zayats A V 1995 Phys. Rev. B 51 17916
[30] Minovich A E, Miroshnichenko A E, Bykov A Y, Murzina T V, NeshevD N and Kivshar Y S 2015 Laser Photonics Rev. 9 195
[31] Keren-Zur S, Avayu O, Michaeli L and Ellenbogen T 2015 ACS Photonics 3 117
[32] Almeida E, Shalem G and Prior Y 2016 Nat. Commun. 7 10367
[33] Lee J, Tymchenko M, Argyropoulos C, Chen P Y, Lu F, Demmerle F,Boehm G, Amann M C, Alu A and Belkin M A 2014 Nature 511 65
[34] Nookala N, Lee J, Tymchenko M, Gomez-Diaz J S, Demmerle F,Boehm G, Lai K, Shvets G, Amann M C, Alu A and Belkin M 2016 Optica 3 283
[35] Kelley P L 1965 Phys. Rev. Lett. 15 1005
[36] Zel'dovich B Y, Pilipetsky N F and Shkunov V V 1985 Principles of Phase Conjugation (Berlin:Springer-Verlag)
[37] Gibbs M H, McCall L S and Venkatesan C N T 1976 Phys. Rev. Lett. 36 1135
[38] Silberberg Y and Joseph I B 1982 Phys. Rev. Lett. 48 1541
[39] Sahraia M, Hamedia H R and Memarzadeha M 2012 J. Mod. Opt. 59 980
[40] Schmidt H and Imomoglu A 1996 Opt. Lett. 21 1936
[41] Bacha B A, Ghafoor F, Ahmad I and Rahman A 2014 Laser Phys. 24 055401
[42] Xiao Y, Qian H and Liu Z 2018 ACS Photonics 5 1654
[43] Rokhsari H and Vahala K J 2005 Opt. Lett. 30 427
[44] Bacha B A, Ghafoor F, Ahmad I and Rahman A 2014 Laser Phys. 24 055401
[45] Ahmad S, Ahmad A, Bacha B A, Khan A A and AbdulJabar M S 2017 Eur. Phys. J. Plus 132 506
[46] Krasnok A, Tymchenko M and Alù A 2017 Mater. Today 21 8
[1] Polarization Raman spectra of graphene nanoribbons
Wangwei Xu(许望伟), Shijie Sun(孙诗杰), Muzi Yang(杨慕紫), Zhenliang Hao(郝振亮), Lei Gao(高蕾), Jianchen Lu(卢建臣), Jiasen Zhu(朱嘉森), Jian Chen(陈建), and Jinming Cai(蔡金明). Chin. Phys. B, 2023, 32(4): 046803.
[2] Spin- and valley-polarized Goos-Hänchen-like shift in ferromagnetic mass graphene junction with circularly polarized light
Mei-Rong Liu(刘美荣), Zheng-Fang Liu(刘正方), Ruo-Long Zhang(张若龙), Xian-Bo Xiao(肖贤波), and Qing-Ping Wu(伍清萍). Chin. Phys. B, 2023, 32(3): 037301.
[3] Graphene metasurface-based switchable terahertz half-/quarter-wave plate with a broad bandwidth
Xiaoqing Luo(罗小青), Juan Luo(罗娟), Fangrong Hu(胡放荣), and Guangyuan Li(李光元). Chin. Phys. B, 2023, 32(2): 027801.
[4] Correlated states in alternating twisted bilayer-monolayer-monolayer graphene heterostructure
Ruirui Niu(牛锐锐), Xiangyan Han(韩香岩), Zhuangzhuang Qu(曲壮壮), Zhiyu Wang(王知雨), Zhuoxian Li(李卓贤), Qianling Liu(刘倩伶), Chunrui Han(韩春蕊), and Jianming Lu(路建明). Chin. Phys. B, 2023, 32(1): 017202.
[5] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[6] Dynamically tunable multiband plasmon-induced transparency effect based on graphene nanoribbon waveguide coupled with rectangle cavities system
Zi-Hao Zhu(朱子豪), Bo-Yun Wang(王波云), Xiang Yan(闫香), Yang Liu(刘洋), Qing-Dong Zeng(曾庆栋), Tao Wang(王涛), and Hua-Qing Yu(余华清). Chin. Phys. B, 2022, 31(8): 084210.
[7] Dual-channel tunable near-infrared absorption enhancement with graphene induced by coupled modes of topological interface states
Zeng-Ping Su(苏增平), Tong-Tong Wei(魏彤彤), and Yue-Ke Wang(王跃科). Chin. Phys. B, 2022, 31(8): 087804.
[8] Recent advances of defect-induced spin and valley polarized states in graphene
Yu Zhang(张钰), Liangguang Jia(贾亮广), Yaoyao Chen(陈瑶瑶), Lin He(何林), and Yeliang Wang(王业亮). Chin. Phys. B, 2022, 31(8): 087301.
[9] Precisely controlling the twist angle of epitaxial MoS2/graphene heterostructure by AFM tip manipulation
Jiahao Yuan(袁嘉浩), Mengzhou Liao(廖梦舟), Zhiheng Huang(黄智恒), Jinpeng Tian(田金朋), Yanbang Chu(褚衍邦), Luojun Du(杜罗军), Wei Yang(杨威), Dongxia Shi(时东霞), Rong Yang(杨蓉), and Guangyu Zhang(张广宇). Chin. Phys. B, 2022, 31(8): 087302.
[10] Longitudinal conductivity in ABC-stacked trilayer graphene under irradiating of linearly polarized light
Guo-Bao Zhu(朱国宝), Hui-Min Yang(杨慧敏), and Jie Yang(杨杰). Chin. Phys. B, 2022, 31(8): 088102.
[11] Valley-dependent transport in strain engineering graphene heterojunctions
Fei Wan(万飞), X R Wang(王新茹), L H Liao(廖烈鸿), J Y Zhang(张嘉颜),M N Chen(陈梦南), G H Zhou(周光辉), Z B Siu(萧卓彬), Mansoor B. A. Jalil, and Yuan Li(李源). Chin. Phys. B, 2022, 31(7): 077302.
[12] Thermionic electron emission in the 1D edge-to-edge limit
Tongyao Zhang(张桐耀), Hanwen Wang(王汉文), Xiuxin Xia(夏秀鑫), Chengbing Qin(秦成兵), and Xiaoxi Li(李小茜). Chin. Phys. B, 2022, 31(5): 058504.
[13] Photoelectrochemical activity of ZnO:Ag/rGO photo-anodes synthesized by two-steps sol-gel method
D Ben Jemia, M Karyaoui, M A Wederni, A Bardaoui, M V Martinez-Huerta, M Amlouk, and R Chtourou. Chin. Phys. B, 2022, 31(5): 058201.
[14] TiS2-graphene heterostructures enabling polysulfide anchoring and fast electrocatalyst for lithium-sulfur batteries: A first-principles calculation
Wenyang Zhao(赵文阳), Li-Chun Xu(徐利春), Yuhong Guo(郭宇宏), Zhi Yang(杨致), Ruiping Liu(刘瑞萍), and Xiuyan Li(李秀燕). Chin. Phys. B, 2022, 31(4): 047101.
[15] Improving the performance of a GaAs nanowire photodetector using surface plasmon polaritons
Xiaotian Zhu(朱笑天), Bingheng Meng(孟兵恒), Dengkui Wang(王登魁), Xue Chen(陈雪), Lei Liao(廖蕾), Mingming Jiang(姜明明), and Zhipeng Wei(魏志鹏). Chin. Phys. B, 2022, 31(4): 047801.
No Suggested Reading articles found!