Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(10): 100701    DOI: 10.1088/1674-1056/27/10/100701
GENERAL Prev   Next  

Development of a 170-mm hollow corner cube retroreflector for the future lunar laser ranging

Yun He(何芸)1,2,3, Qi Liu(刘祺)1,3, Jing-Jing He(何静静)2, Ming Li(黎明)4, Hui-Zong Duan(段会宗)1,3, Hsien-Chi Yeh(叶贤基)1,3, Jun Luo(罗俊)1
1 TianQin Research Center for Gravitational Physics, Sun Yat-sen University, Zhuhai 519000, China;
2 MOE Key Laboratory of Fundamental Physical Quantities Measurement, School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China;
3 School of Physics and Astronomy, Sun Yat-sen University, Zhuhai 519000, China;
4 DFH Satellite Co., Ltd., Beijing 100094, China
Abstract  

Over the past 50 years, lunar laser ranging has made great contributions to the understanding of the Earth-Moon system and the tests of general relativity. However, because of the lunar libration, the Apollo and Lunokhod corner-cube retroreflector (CCR) arrays placed on the Moon currently limit the ranging precision to a few centimeters for a single photon received. Therefore, it is necessary to deploy a new retroreflector with a single and large aperture to improve the ranging precision by at least one order of magnitude. Here we present a hollow retroreflector with a 170-mm aperture fabricated using hydroxide-catalysis bonding technology. The precisions of the two dihedral angles are achieved by the mirror processing with a sub-arc-second precision perpendicularity, and the remaining one is adjusted utilizing an auxiliary optical configuration including two autocollimators. The achieved precisions of the three dihedral angles are 0.10 arc-second, 0.30 arc-second, and 0.24 arc-second, indicating the 68.5% return signal intensity of ideal Apollo 11/14 based on the far field diffraction pattern simulation. We anticipate that this hollow CCR can be applied in the new generation of lunar laser ranging.

Keywords:  lunar laser ranging      corner cube retroreflector      diffraction      alignment  
Received:  24 June 2018      Revised:  16 July 2018      Accepted manuscript online: 
PACS:  07.60.-j (Optical instruments and equipment)  
  07.07.Df (Sensors (chemical, optical, electrical, movement, gas, etc.); remote sensing)  
  04.80.Cc (Experimental tests of gravitational theories)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 11655001 and 11605065).

Corresponding Authors:  Qi Liu     E-mail:  liuq239@mail.sysu.edu.cn

Cite this article: 

Yun He(何芸), Qi Liu(刘祺), Jing-Jing He(何静静), Ming Li(黎明), Hui-Zong Duan(段会宗), Hsien-Chi Yeh(叶贤基), Jun Luo(罗俊) Development of a 170-mm hollow corner cube retroreflector for the future lunar laser ranging 2018 Chin. Phys. B 27 100701

[1] Murphy T, Adelberger E, Strasburg J, Stubbs C and Nordtvedt K 2004 Nucl. Phys. B (Proc. Suppl.) 134 155
[2] Murphy T 2013 Rep. Prog. Phys. 76 076901
[3] Merkowitz S 2010 Living Rev. Relativ. 13 7
[4] Murphy T, Adelberger E, Battat J, Carey L, Hoyle C, Leblanc P, Michelsen E, Nordtvedt K, Orin A, Strasburg J, Stubbs C, Swanson H and Williams E 2008 Publ. Astron. Soc. Pac. 120 20
[5] Turyshev S G, Williams J G, Folkner W M, Gutt G M, Baran R T, Hein R C, Somawardhana R P, Lipa J A and Wang S 2013 Exp. Astron. 36 105
[6] Currie D, DellAgnello S and Monache G 2011 Acta Astronaut. 68 667
[7] Murphy T, Adelberger E, Battat J, Hoyle C, McMillan R, Michelsen E, Samad R, Stubbs C and Swanson H 2010 Icarus 208 31
[8] Currie D, DellAgnello S, Monache G, Behr B and Williams J 2013 Nucl. Phys. B (Proc. Suppl.) 243-244 218
[9] Araki H, Kashima S, Noda H, Kunimori H, Chiba K, Mashiko H, Kato H, Otsubo T, Matsumoto Y, Tsuruta S, Asari K, Hanada H, Yasuda S, Utsunomiya S and Takino H 2016 Earth Planets Space 68 101
[10] Wing W H 2003 Opt. Commun. 220 1-6
[11] Otsubo T, Kunimori H, Noda H and Hanada H 2010 Adv. Space Res. 45 733
[12] Preston A and Merkowitz S 2013 Appl. Opt. 52 8676
[13] Preston A and Merkowitz S 2014 Opt. Eng. 53 065107
[14] Burke J, Oreb B, Platt B and Nemati 2005 Proc. SPIE 5869 58690W
[15] Oreb B, Burke J, Netterfield R, Seckold J, Leistner A, Gross M and Dligatch S 2006 Proc. SPIE 6292 629202
[16] Burke J, Green K, Raouf N, Seckold J and Oreb B 2008 Proc. SPIE 7013 701351
[17] Gwo D 1998 Proc. SPIE 3435 136
[18] Gwo D, Wang S, Bower K, Davidson D, Ehrersberger P, Huff L, Romero E, Sullivan M, Triebes K and Lipa J 2003 Adv. Space Res. 32 1401
[19] Ciocci E, Martini M, Contessa S, Procelli L, Mastrofini M, Currie D, Monache G and DellAgnello S 2017 Adv. Space Res. 60 1300
[20] He Y, Liu Q, Tian W, Duan H, Yeh H, Fan S and Li Y 2017 J. Deep Space Exploration 4 130 (in Chinese)
[21] He Y, Liu Q, Duan H, Yeh H and Li Y 2016 Proceedings of the 20$th International Workshop on Laser Ranging, October 9-14, 2016, Potsdam, Germany
[22] He Y, Liu Q, Duan H, He J, Jiang Y and Yeh H 2018 Res. Astron. Astrophys. accepted
[1] Precision measurement and suppression of low-frequency noise in a current source with double-resonance alignment magnetometers
Jintao Zheng(郑锦韬), Yang Zhang(张洋), Zaiyang Yu(鱼在洋), Zhiqiang Xiong(熊志强), Hui Luo(罗晖), and Zhiguo Wang(汪之国). Chin. Phys. B, 2023, 32(4): 040601.
[2] A three-band perfect absorber based on a parallelogram metamaterial slab with monolayer MoS2
Wen-Jing Zhang(张雯婧), Qing-Song Liu(刘青松), Bo Cheng(程波), Ming-Hao Chao(晁明豪),Yun Xu(徐云), and Guo-Feng Song(宋国峰). Chin. Phys. B, 2023, 32(3): 034211.
[3] Gamma induced changes in Makrofol/CdSe nanocomposite films
Ali A. Alhazime, M. ME. Barakat, Radiyah A. Bahareth, E. M. Mahrous,Saad Aldawood, S. Abd El Aal, and S. A. Nouh. Chin. Phys. B, 2022, 31(9): 097802.
[4] Determination of band alignment between GaOx and boron doped diamond for a selective-area-doped termination structure
Qi-Liang Wang(王启亮), Shi-Yang Fu(付诗洋), Si-Han He(何思翰), Hai-Bo Zhang(张海波),Shao-Heng Cheng(成绍恒), Liu-An Li(李柳暗), and Hong-Dong Li(李红东). Chin. Phys. B, 2022, 31(8): 088104.
[5] How to realize an ultrafast electron diffraction experiment with a terahertz pump: A theoretical study
Dan Wang(王丹), Xuan Wang(王瑄), Guoqian Liao(廖国前), Zhe Zhang(张喆), and Yutong Li(李玉同). Chin. Phys. B, 2022, 31(5): 056103.
[6] Penumbra lunar eclipse observations reveal anomalous thermal performance of Lunakhod 2 reflectors
Tian-Quan Gao(高添泉), Cai-Shi Zhang(张才士), Hong-Chao Zhao(赵宏超), Li-Xiang Zhou(周立祥), Xian-Lin Wu(吴先霖), Hsienchi Yeh(叶贤基), and Ming Li(李明). Chin. Phys. B, 2022, 31(5): 050602.
[7] Tunable electronic properties of GaS-SnS2 heterostructure by strain and electric field
Da-Hua Ren(任达华), Qiang Li(李强), Kai Qian(钱楷), and Xing-Yi Tan(谭兴毅). Chin. Phys. B, 2022, 31(4): 047102.
[8] Temperature-dependent structure and magnetization of YCrO3 compound
Qian Zhao(赵前), Ying-Hao Zhu(朱英浩), Si Wu(吴思), Jun-Chao Xia(夏俊超), Peng-Fei Zhou(周鹏飞), Kai-Tong Sun(孙楷橦), and Hai-Feng Li(李海峰). Chin. Phys. B, 2022, 31(4): 046101.
[9] Generation of elliptical isolated attosecond pulse from oriented H2+ in a linearly polarized laser field
Yun-He Xing(邢云鹤), Jun Zhang(张军), Xiao-Xin Huo(霍晓鑫), Qing-Yun Xu(徐清芸), and Xue-Shen Liu(刘学深). Chin. Phys. B, 2022, 31(4): 043203.
[10] Color-image encryption scheme based on channel fusion and spherical diffraction
Jun Wang(王君), Yuan-Xi Zhang(张沅熙), Fan Wang(王凡), Ren-Jie Ni(倪仁杰), and Yu-Heng Hu(胡玉衡). Chin. Phys. B, 2022, 31(3): 034205.
[11] Characterization of the N-polar GaN film grown on C-plane sapphire and misoriented C-plane sapphire substrates by MOCVD
Xiaotao Hu(胡小涛), Yimeng Song(宋祎萌), Zhaole Su(苏兆乐), Haiqiang Jia(贾海强), Wenxin Wang(王文新), Yang Jiang(江洋), Yangfeng Li(李阳锋), and Hong Chen(陈弘). Chin. Phys. B, 2022, 31(3): 038103.
[12] Beam alignments based on the spectrum decomposition of orbital angular momentums for acoustic-vortex communications
Gepu Guo(郭各朴), Xinjia Li(李昕珈), Qingdong Wang(王青东), Yuzhi Li(李禹志), Qingyu Ma(马青玉), Juan Tu(屠娟), and Dong Zhang(章东). Chin. Phys. B, 2022, 31(12): 124302.
[13] Equal compressibility structural phase transition of molybdenum at high pressure
Lun Xiong(熊伦), Bin Li(李斌), Fang Miao(苗芳), Qiang Li (李强), Guangping Chen(陈光平), Jinxia Zhu(竹锦霞), Yingchun Ding(丁迎春), and Duanwei He(贺端威). Chin. Phys. B, 2022, 31(11): 116102.
[14] Pressure-induced phase transition in transition metal trifluorides
Peng Liu(刘鹏), Meiling Xu(徐美玲), Jian Lv(吕健), Pengyue Gao(高朋越), Chengxi Huang(黄呈熙), Yinwei Li(李印威), Jianyun Wang(王建云), Yanchao Wang(王彦超), and Mi Zhou(周密). Chin. Phys. B, 2022, 31(10): 106104.
[15] Origin of the low formation energy of oxygen vacancies in CeO2
Han Xu(许涵), Tongtong Shang(尚彤彤), Xuefeng Wang(王雪锋), Ang Gao(高昂), and Lin Gu(谷林). Chin. Phys. B, 2022, 31(10): 107102.
No Suggested Reading articles found!