|
|
Penumbra lunar eclipse observations reveal anomalous thermal performance of Lunakhod 2 reflectors |
Tian-Quan Gao(高添泉), Cai-Shi Zhang(张才士), Hong-Chao Zhao(赵宏超), Li-Xiang Zhou(周立祥), Xian-Lin Wu(吴先霖), Hsienchi Yeh(叶贤基), and Ming Li(李明)† |
MOE Key Laboratory of TianQin Mission, TianQin Research Center for Gravitational Physics & School of Physics and Astronomy, Frontiers Science Center for TianQin, CNSA Research Center for Gravitational Waves, Sun Yat-sen University (Zhuhai Campus), Zhuhai 519082, China |
|
|
Abstract As the signal reflected by the corner-cube reflector arrays is very weak and easily submerged during the full moon, we analyze the influence of the thermal effect of corner-cube reflector arrays on the intensity of lunar laser ranging echo. Laser ranging measurements during the penumbra lunar eclipse verify suspected thermal deformation in the Lunakhod 2 reflectors. Signal levels vary over two orders of magnitude as the penumbra eclipse progresses. This can be explained by the change in the dihedral angle of the corner-cube reflectors caused by the temperature. The results show that when the dihedral angle errors reach 1'', the energy is reduced by 100 times compared with the ideal corner-cube reflector. In the experiment, our findings suggest that when the corner-cube reflector arrays enter the penumbra of the earth, the effective echo signal level which reaches 0.18 photons/s far exceeds the historical level of the full moon. However, 11 minutes after the penumbra lunar eclipse, the effective echo rate of Lunakhod 2 will drop two orders of magnitude. The mechanism can explain the acute signal deficit observed at full moon.
|
Received: 26 August 2021
Revised: 08 October 2021
Accepted manuscript online:
|
PACS:
|
06.30.-k
|
(Measurements common to several branches of physics and astronomy)
|
|
07.07.Df
|
(Sensors (chemical, optical, electrical, movement, gas, etc.); remote sensing)
|
|
07.60.-j
|
(Optical instruments and equipment)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No.12033009). |
Corresponding Authors:
Ming Li,E-mail:liming73@mail.sysu.edu.cn
E-mail: liming73@mail.sysu.edu.cn
|
About author: 2021-10-18 |
Cite this article:
Tian-Quan Gao(高添泉), Cai-Shi Zhang(张才士), Hong-Chao Zhao(赵宏超), Li-Xiang Zhou(周立祥), Xian-Lin Wu(吴先霖), Hsienchi Yeh(叶贤基), and Ming Li(李明) Penumbra lunar eclipse observations reveal anomalous thermal performance of Lunakhod 2 reflectors 2022 Chin. Phys. B 31 050602
|
[1] Biskupek L and Torre J M 2021 Universe 7 34 [2] Williams J G, Dicke R H, Bender P L, Alley C O and Wilkinson D T 1976 Phys. Rev. Lett. 36 551 [3] Yi X and Kopeikin S 2010 Proceedings of the International Astronomical Union 5(S261) 350 [4] Bender P L, Currie D G, Poultney S K, Alley C O, Dicke R H, Wilkinson D T, Eckhardt D H, Faller J E, Kaula W M and Mulholland J D 1973 Science 182 229 [5] Hammond A L 1970 Science 170 1289 [6] Shelus P J 1985 IEEE Transactions on Geoscience and Remote Sensing GE-23 385 [7] Li Y Q, Fu H L, Li R W, Tang R F, Li Z L, Zhai D S, Zhang H T, Pi XY, Hsienchi Yeh and Xiong Y H 2019 Chin. J. Laser. 46 0104004 [8] Courde C, Torre J M, Samain E, Martinot-Lagarde G and Viswanathan V 2017 Astron. Astrophys 602 A90 [9] Battat J B R, Murphy T W, Adelberger E G, Gillespie B, Hoyle C D, Mcmillan R J, Michelsen E L, Nordtvedt K, Orin A E and Stubbs C W 2017 Publications of the Astronomical Society of the Pacific 129 049201 [10] Murphy Jr T W, Adelberger E G, Battat J B R, Hoyle C D and Swanson H E 2012 Classical Quant. Grav. 29 184005 [11] Murphy T W 2013 Rep. Prog. Phys. 76 076901 [12] Murphy T W, Michelson E L, Orin A E, Adelberger E G, Hoyle C D, Swanson H E, Stubbs C W and Battat J B 2007 Int. J. Mod. Phys. D 16 2127 [13] Strasburg J D, Murphy Jr T W, Stubbs C W, Adelberger E G and Angle J I 2002 Int. Soc. Opt. Photon. 4836 387 [14] Müller J, Murphy T W, Schreiber U, Shelus P J and Hofmann F 2019 J. Geodesy 93 2195 [15] Murphy T W, Adeberger E G, Battat J B R, Hoyle C D, Johnson N H, Mcmillan R J, Michelsen E L, Stubbs C W and Swanson H E 2011 Icarus 211 1103 [16] Goodrow S D and Murphy T W 2012 Appl. Opt. 51 8793 [17] Murphy Jr T W, Mcmillan R J, Johnson N H and Goodrow S D 2014 Icarus 231 183 [18] Currie D 2012 Science 71 131 [19] Martini M, Dell'Agnello S and Currie D 2012 Planetary and Space Science 74 276 [20] Araki H, Kashima S, Noda H, Kunimori H, Chiba K, Mashiko H, et al. 2016 Earth, Planets and Space 68 1 [21] Zhou H, Li S, Zhang W H and Chen Y W 2020 Appl. Opt. 59 2621 [22] He Y, Liu Q, He J J, Li M, Duan H Z and Hsien C Y 2018 Chin. Phys. B 27 100701 [23] Wang J T, Zhou J, Zang H G and Zhu X L 2010 Chin. Opt. Lett. 8 670 [24] Zhang H F, Long M L, Deng H R, Wu Z B, Cheng Z E and Zhang Z P 2019 Chin. Opt. Lett. 17 051404 [25] Liu F, Jiang M S, Lu Y F, Wang Y and Bao W S 2021 Chin. Phys. B 30 040302 [26] Zhou H, He Y H, Lv C L, You L X, Li Z H, Wu G, Zhang W J, Zhang L, Liu X Y, Yang X Y and Wang Z 2018 Chin. Phys. B 27 018501 [27] Wang Y, Li H, You L X, Lv C L, Wang H Q, Zhang X Y, Zhang W J, Zhou H, Zhang L, Yang X Y and Wang Z 2019 Chin. Phys. B 28 078502 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|