Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(10): 100308    DOI: 10.1088/1674-1056/27/10/100308
GENERAL Prev   Next  

Coherent attacks on a practical quantum oblivious transfer protocol

Guang-Ping He(何广平)
School of Physics, Sun Yat-sen University, Guangzhou 510275, China

In a recent quantum oblivious transfer protocol proposed by Nagy et al., it was proven that attacks based on individual measurements and 2-qubit entanglement can all be defeated. Later we found that 5-body entanglement-based attacks can break the protocol. Here we further tighten the security bound, by showing that the protocol is insecure against 4-body entanglement-based attacks, while being immune to 3-body entanglement-based attacks. Also, increasing the number of qubits in the protocol is useless for improving its security.

Keywords:  quantum cryptography      quantum algorithm      quantum oblivious transfer      entanglement  
Received:  27 April 2018      Revised:  19 July 2018      Accepted manuscript online: 
PACS:  03.67.Dd (Quantum cryptography and communication security)  
  03.67.Ac (Quantum algorithms, protocols, and simulations)  
  03.65.Ud (Entanglement and quantum nonlocality)  
  03.67.Hk (Quantum communication)  
Corresponding Authors:  Guang-Ping He     E-mail:

Cite this article: 

Guang-Ping He(何广平) Coherent attacks on a practical quantum oblivious transfer protocol 2018 Chin. Phys. B 27 100308

[1] Bennett C H and Brassard G 1984 in Proceedings of IEEE Int. Conf. Computers, Systems, and Signal Processing, Bangalore, India (IEEE, New York) p. 175
[2] Rabin M O 1981 technical report TR-81 (Aiken Computation Laboratory, Harvard University) Available online at
[3] Even S, Goldreich O and Lempel A 1982 Advances in Cryptology:Proc. Crypto '82 (Plenum) p. 205
[4] Kilian J 1988 Proc. 1988 ACM Annual Symposium on Theory of Computing (ACM, New York) p. 20
[5] Colbeck R 2007 Phys. Rev. A 76 062308
[6] Salvail L, Schaffner C and Sotakova M 2008 arXiv:0902.4036
[7] Salvail L and Sotakova M 2009 arXiv:0906.1671
[8] Colbeck R 2009 arXiv:0911.3814
[9] Chailloux A, Kerenidis I and Sikora J 2013 Quantum Inform. Comput. 13 158
[10] He G P 2011 J. Phys. A:Math. Theor. 44 445305
[11] He G P 2015 Phys. Rev. A 92 046301
[12] He G P 2018 J. Phys. A:Math. Theor. 51 155301
[13] Wehner S, Schaffner C and Terhal B 2008 Phys. Rev. Lett. 100 220502
[14] Schaffner C 2010 Phys. Rev. A 82 032308
[15] Wei C Y, Cai X Q, Liu B, Wang T Y and Gao F 2018 IEEE Trans. Comput. 67 2
[16] Guo X Q, Luo C L and Yan Y 2013 J. Theor. Appl. Inform. Technol. 47 277
[17] Erven C, Ng N, Gigov N, Laflamme R, Wehner S and Weihs G 2014 Nat. Commun. 5 3418
[18] Li Y B, Wen Q Y, Qin S J, Guo F Z and Sun Y 2014 Quantum Inform. Process. 13 131
[19] Yang Y G, Xu P, Tian J and Zhang H 2014 Optik 125 5409
[20] Yang Y G, Sun S and Wang Y 2014 Int. J. Theor. Phys. 54 910
[21] He G P 2015 Quantum Inform. Process. 14 2153
[22] Yang Y G, Yang R, Lei H, Shi W M and Zhou Y H 2015 Quantum Inform. Process. 14 3031
[23] Yang Y G, Sun S J, Pan Q X and Xu P 2015 Optik 126 3206
[24] Yang Y G, Sun S J, Pan Q X and Xu P 2015 Optik 126 3838
[25] Pitalúa-García D 2016 Phys. Rev. A 93 062346
[26] Plesch M, Pawłowski M and Pivoluska M 2017 Phys. Rev. A 95 042324
[27] Yang Y G, Yang R, Cao W F, Chen X B, Zhou Y H and Shi W M 2017 Int. J. Theor. Phys. 56 1286
[28] Furrer F, Gehring T, Schaffner C, Pacher C, Schnabel R and Wehner S 2018 Nat. Commun. 9 1450
[29] Cheng X G, Guo R and Chen Y H 2018 Int. J. Quantum Inform. 16 1850039
[30] Nagy M and Nagy N 2016 Quantum Inform. Process. 15 5037
[31] He G P 2017 Quantum Inform. Process. 16 96
[32] Herzog U and Bergou J A 2005 Phys. Rev. A 71 050301
[1] Unified entropy entanglement with tighter constraints on multipartite systems
Qi Sun(孙琪), Tao Li(李陶), Zhi-Xiang Jin(靳志祥), and Deng-Feng Liang(梁登峰). Chin. Phys. B, 2023, 32(3): 030304.
[2] Entanglement and thermalization in the extended Bose-Hubbard model after a quantum quench: A correlation analysis
Xiao-Qiang Su(苏晓强), Zong-Ju Xu(许宗菊), and You-Quan Zhao(赵有权). Chin. Phys. B, 2023, 32(2): 020506.
[3] Variational quantum simulation of thermal statistical states on a superconducting quantum processer
Xue-Yi Guo(郭学仪), Shang-Shu Li(李尚书), Xiao Xiao(效骁), Zhong-Cheng Xiang(相忠诚), Zi-Yong Ge(葛自勇), He-Kang Li(李贺康), Peng-Tao Song(宋鹏涛), Yi Peng(彭益), Zhan Wang(王战), Kai Xu(许凯), Pan Zhang(张潘), Lei Wang(王磊), Dong-Ning Zheng(郑东宁), and Heng Fan(范桁). Chin. Phys. B, 2023, 32(1): 010307.
[4] Transformation relation between coherence and entanglement for two-qubit states
Qing-Yun Zhou(周晴云), Xiao-Gang Fan(范小刚), Fa Zhao(赵发), Dong Wang(王栋), and Liu Ye(叶柳). Chin. Phys. B, 2023, 32(1): 010304.
[5] Nonreciprocal coupling induced entanglement enhancement in a double-cavity optomechanical system
Yuan-Yuan Liu(刘元元), Zhi-Ming Zhang(张智明), Jun-Hao Liu(刘军浩), Jin-Dong Wang(王金东), and Ya-Fei Yu(於亚飞). Chin. Phys. B, 2022, 31(9): 094203.
[6] Characterizing entanglement in non-Hermitian chaotic systems via out-of-time ordered correlators
Kai-Qian Huang(黄恺芊), Wei-Lin Li(李蔚琳), Wen-Lei Zhao(赵文垒), and Zhi Li(李志). Chin. Phys. B, 2022, 31(9): 090301.
[7] Direct measurement of two-qubit phononic entangled states via optomechanical interactions
A-Peng Liu(刘阿鹏), Liu-Yong Cheng(程留永), Qi Guo(郭奇), Shi-Lei Su(苏石磊), Hong-Fu Wang(王洪福), and Shou Zhang(张寿). Chin. Phys. B, 2022, 31(8): 080307.
[8] Purification in entanglement distribution with deep quantum neural network
Jin Xu(徐瑾), Xiaoguang Chen(陈晓光), Rong Zhang(张蓉), and Hanwei Xiao(肖晗微). Chin. Phys. B, 2022, 31(8): 080304.
[9] Robustness of two-qubit and three-qubit states in correlated quantum channels
Zhan-Yun Wang(王展云), Feng-Lin Wu(吴风霖), Zhen-Yu Peng(彭振宇), and Si-Yuan Liu(刘思远). Chin. Phys. B, 2022, 31(7): 070302.
[10] Quantum algorithm for neighborhood preserving embedding
Shi-Jie Pan(潘世杰), Lin-Chun Wan(万林春), Hai-Ling Liu(刘海玲), Yu-Sen Wu(吴宇森), Su-Juan Qin(秦素娟), Qiao-Yan Wen(温巧燕), and Fei Gao(高飞). Chin. Phys. B, 2022, 31(6): 060304.
[11] Self-error-rejecting multipartite entanglement purification for electron systems assisted by quantum-dot spins in optical microcavities
Yong-Ting Liu(刘永婷), Yi-Ming Wu(吴一鸣), and Fang-Fang Du(杜芳芳). Chin. Phys. B, 2022, 31(5): 050303.
[12] Effects of colored noise on the dynamics of quantum entanglement of a one-parameter qubit—qutrit system
Odette Melachio Tiokang, Fridolin Nya Tchangnwa, Jaures Diffo Tchinda,Arthur Tsamouo Tsokeng, and Martin Tchoffo. Chin. Phys. B, 2022, 31(5): 050306.
[13] Quantum private comparison of arbitrary single qubit states based on swap test
Xi Huang(黄曦), Yan Chang(昌燕), Wen Cheng(程稳), Min Hou(侯敏), and Shi-Bin Zhang(张仕斌). Chin. Phys. B, 2022, 31(4): 040303.
[14] Probabilistic resumable quantum teleportation in high dimensions
Xiang Chen(陈想), Jin-Hua Zhang(张晋华), and Fu-Lin Zhang(张福林). Chin. Phys. B, 2022, 31(3): 030302.
[15] Tetrapartite entanglement measures of generalized GHZ state in the noninertial frames
Qian Dong(董茜), R. Santana Carrillo, Guo-Hua Sun(孙国华), and Shi-Hai Dong(董世海). Chin. Phys. B, 2022, 31(3): 030303.
No Suggested Reading articles found!