Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(10): 100309    DOI: 10.1088/1674-1056/27/10/100309
GENERAL Prev   Next  

Passive round-robin differential-quadrature-phase-shift quantum key distribution scheme with untrusted detectors

Hongwei Liu(刘宏伟), Wenxiu Qu(屈文秀), Tianqi Dou(窦天琦), Jipeng Wang(王吉鹏), Yong Zhang(张勇), Haiqiang Ma(马海强)
School of Science, State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, China
Abstract  

In this paper, we proposed the scheme for a passive round-robin differential-phase-shift quantum key distribution (RRDPS-QKD) set-up based on the principle of Hong-Ou-Mandel interference. Our scheme requires two legitimate parties to prepare their signal state with two different non-orthogonal bases instead of single in original protocol. Incorporating this characteristic, we establish the level of security of our protocol under the intercept-resend attack and demonstrate its detector-flaw-immune feature. Furthermore, we show that our scheme not only inherits the merit of better tolerance of bit errors and finite-sized-key effects but can be implemented using hardware similar to the measurement device independent QKD (MDI-QKD). This ensures good compatibility with the current commonly used quantum system.

Keywords:  quantum key distribution      round-robin-differential-phase-shift      untrusted detector  
Received:  13 June 2018      Revised:  27 July 2018      Accepted manuscript online: 
PACS:  03.67.Dd (Quantum cryptography and communication security)  
  03.67.Hk (Quantum communication)  
Fund: 

Project supported by the Fund from the State Key Laboratory of Information Photonics and Optical Communications (Beijing University of Posts and Telecommunications) (Grant No. IPOC2017ZT0).

Corresponding Authors:  Haiqiang Ma     E-mail:  hqma@bupt.edu.cn

Cite this article: 

Hongwei Liu(刘宏伟), Wenxiu Qu(屈文秀), Tianqi Dou(窦天琦), Jipeng Wang(王吉鹏), Yong Zhang(张勇), Haiqiang Ma(马海强) Passive round-robin differential-quadrature-phase-shift quantum key distribution scheme with untrusted detectors 2018 Chin. Phys. B 27 100309

[1] Bennett C H, Brassard G 1984 Proceedings ofIEEE International Conference on Computers, Systems, and Signal Processing pp. 175-99
[2] Yang X Q, Wei K J, Ma H Q, Sun S H, Liu H W, Yin Z Q, Li Z H, Lian S B, Du Y G and Wu L A 2016 Phys. Rev. A 93 052303
[3] Liu H W, Ma H Q, Wei K J, Yang X Q, Qu W X, Dou T Q, Chen Y T, Li R X and Zhu W 2016 Phys. Lett. A 380 2349
[4] Wei K J, Ma H Q and Yang J H 2013 Opt. Express 21 16663
[5] Ma H Q, Wei K J and Yang J H 2013 Opt. Lett. 38 4494
[6] Tang G Z, Sun S H, Chen H, Li C Y, and Liang L M 2016 Chin. Phys. Lett. 33 120301
[7] Liu C Q, Zhu C H, Wang L H, Zhang L X and Pei C X 2016 Chin. Phys. Lett. 33 100301
[8] Ekert A K 1991 Phys. Rev. Lett. 67 661
[9] Inoue K, Waks E and Yamamoto Y 2002 Phys. Rev. Lett. 89 037902
[10] Hatakeyama A, Mizutani A, Kato G, Imoto N and Tamaki K 2017 Phys. Rev. A 95 042301
[11] Inoue K and Iwai Y 2009 Phys. Rev. A 79 022319
[12] Stucki D, Brunner N, Gisin N, Scarani V and Zbinden H 2005 Appl. Phys. Lett. 87 194108
[13] Stucki D, Walenta N, Vannel F, Thew R T, Gisin N, Zbinden H, Gray S, Towery C R and Ten S 2009 New. J. Phys. 11 075003
[14] Lo H K and Chua H F 1999 Science 283 2050
[15] Shor P W and Preskill J 2000 Phys. Rev. Lett. 85 441
[16] Moroder T, Curty M, Lim C C W, Thinh L P, Zbinden H and Gisin N 2012 Phys. Rev. Lett. 109 260501
[17] Kawakami S, Sasaki T and Koashi M 2016 Phys. Rev. A 94 022332
[18] Curty M, Lewenstein M and Lütkenhaus N 2004 Phys. Rev. Lett. 92 217903
[19] Sasaki T, Yamamoto Y and Koashi M 2014 Nature 509 475
[20] Guan J Y, Cao Z, Liu Y, Shen Tu G L, Pelc J S, Fejer M M, Peng C Z, Ma X F, Zhang Q and Pan J W 2015 Phys. Rev. Lett. 114 180502
[21] Zhou C, Zhang Y Y, Bao W S, Li H W, Wang Y, Peng and Jiang M S 2017 Chin. Phys. B 26 020303
[22] Cao Z, Yin Z Q and Han Z F 2016 Phys. Rev. A 93 022310
[23] Iwakoshi T 2015 Proc. SPIE 9505 950504
[24] Jiao R Z, Zhang C and Ma H Q 2011 Acta Phys. Sin. 60 110303 (in Chinese)
[25] Zhang Y Y, Bao W S, Zhou C, Li H W, Wang Y and Jiang M S 2017 Chin. Phys. Lett. 34 040301
[26] Liu L, Guo F Z, Qin S J and Wen Q Y 2017 Sci. Rep. 7 42261
[27] Lo H K, Lo H K and Chen K 2005 Phys. Rev. Lett. 94 230504
[28] Gottesman D, Ma X F, Lütkenhaus N and Preskill J 2004 Quantum Inform. Comput. 4 325
[29] Lydersen L, Wiechers C, Wittmann C, Elser D, Skaar J and Makarov V 2010 Nat. Photon. 4 686
[30] Wei K J, Liu H W, Ma H Q, Yang X Q, Zhang Y, Sun Y M, Xiao J H and Ji Y F 2017 Sci. Rep. 7 449
[31] Lim C C W, Korzh B, Martin A, Bussieres F, Thew R and Zbinden H 2014 Appl. Phys. Lett. 105 221112
[32] Takesue H, Sasaki T, Tamaki K and Koashi M 2015 Nat. Photon. 9 827
[33] Wang S, Yin Z Q, Chen W, He D Y, Song X T, Li H W, Zhang L J, Zhou Z, Guo G C and Han Z F 2015 Nat. Photon. 9 832
[34] Li Y H, Cao Y, Dai H, Lin J, Zhang Z, Chen W, Xu Y, Guan J Y, Liao S K, Yin J, Zhang Q, Ma X F, Peng C Z and Pan J W 2016 Phys. Rev. A 93 030302
[35] Toshihiko S and Masato K 2017 Quantum Sci. Technol. 2 024006
[36] Yin Z Q, Wang S, Chen W, Han Y G, Wang R, Guo G C and Han Z F 2018 Nat. Commun. 9 457
[37] Chau H F, Wong C, Wang Q N and Huang T Q 2016 arXiv:1608.08329v1[quant-ph]
[1] Security of the traditional quantum key distribution protocolswith finite-key lengths
Bao Feng(冯宝), Hai-Dong Huang(黄海东), Yu-Xiang Bian(卞宇翔), Wei Jia(贾玮), Xing-Yu Zhou(周星宇), and Qin Wang(王琴). Chin. Phys. B, 2023, 32(3): 030307.
[2] Performance of phase-matching quantum key distribution based on wavelength division multiplexing technology
Haiqiang Ma(马海强), Yanxin Han(韩雁鑫), Tianqi Dou(窦天琦), and Pengyun Li(李鹏云). Chin. Phys. B, 2023, 32(2): 020304.
[3] Temperature characterizations of silica asymmetric Mach-Zehnder interferometer chip for quantum key distribution
Dan Wu(吴丹), Xiao Li(李骁), Liang-Liang Wang(王亮亮), Jia-Shun Zhang(张家顺), Wei Chen(陈巍), Yue Wang(王玥), Hong-Jie Wang(王红杰), Jian-Guang Li(李建光), Xiao-Jie Yin(尹小杰), Yuan-Da Wu(吴远大), Jun-Ming An(安俊明), and Ze-Guo Song(宋泽国). Chin. Phys. B, 2023, 32(1): 010305.
[4] Improvement of a continuous-variable measurement-device-independent quantum key distribution system via quantum scissors
Lingzhi Kong(孔令志), Weiqi Liu(刘维琪), Fan Jing(荆凡), Zhe-Kun Zhang(张哲坤), Jin Qi(齐锦), and Chen He(贺晨). Chin. Phys. B, 2022, 31(9): 090304.
[5] Practical security analysis of continuous-variable quantum key distribution with an unbalanced heterodyne detector
Lingzhi Kong(孔令志), Weiqi Liu(刘维琪), Fan Jing(荆凡), and Chen He(贺晨). Chin. Phys. B, 2022, 31(7): 070303.
[6] Quantum key distribution transmitter chip based on hybrid-integration of silica and lithium niobates
Xiao Li(李骁), Liang-Liang Wang(王亮亮), Jia-shun Zhang(张家顺), Wei Chen(陈巍), Yue Wang(王玥), Dan Wu (吴丹), and Jun-Ming An (安俊明). Chin. Phys. B, 2022, 31(6): 064212.
[7] Short-wave infrared continuous-variable quantum key distribution over satellite-to-submarine channels
Qingquan Peng(彭清泉), Qin Liao(廖骎), Hai Zhong(钟海), Junkai Hu(胡峻凯), and Ying Guo(郭迎). Chin. Phys. B, 2022, 31(6): 060306.
[8] Phase-matching quantum key distribution with light source monitoring
Wen-Ting Li(李文婷), Le Wang(王乐), Wei Li(李威), and Sheng-Mei Zhao(赵生妹). Chin. Phys. B, 2022, 31(5): 050310.
[9] Parameter estimation of continuous variable quantum key distribution system via artificial neural networks
Hao Luo(罗浩), Yi-Jun Wang(王一军), Wei Ye(叶炜), Hai Zhong(钟海), Yi-Yu Mao(毛宜钰), and Ying Guo(郭迎). Chin. Phys. B, 2022, 31(2): 020306.
[10] Detecting the possibility of a type of photon number splitting attack in decoy-state quantum key distribution
Xiao-Ming Chen(陈小明), Lei Chen(陈雷), and Ya-Long Yan(阎亚龙). Chin. Phys. B, 2022, 31(12): 120304.
[11] Realization of simultaneous balanced multi-outputs for multi-protocols QKD decoding based onsilica-based planar lightwave circuit
Jin You(游金), Yue Wang(王玥), and Jun-Ming An(安俊明). Chin. Phys. B, 2021, 30(8): 080302.
[12] Continuous-variable quantum key distribution based on photon addition operation
Xiao-Ting Chen(陈小婷), Lu-Ping Zhang(张露萍), Shou-Kang Chang(常守康), Huan Zhang(张欢), and Li-Yun Hu(胡利云). Chin. Phys. B, 2021, 30(6): 060304.
[13] Practical decoy-state BB84 quantum key distribution with quantum memory
Xian-Ke Li(李咸柯), Xiao-Qian Song(宋小谦), Qi-Wei Guo(郭其伟), Xing-Yu Zhou(周星宇), and Qin Wang(王琴). Chin. Phys. B, 2021, 30(6): 060305.
[14] Three-party reference frame independent quantum key distribution protocol
Comfort Sekga and Mhlambululi Mafu. Chin. Phys. B, 2021, 30(12): 120301.
[15] Reference-frame-independent quantum key distribution of wavelength division multiplexing with multiple quantum channels
Zhongqi Sun(孙钟齐), Yanxin Han(韩雁鑫), Tianqi Dou(窦天琦), Jipeng Wang(王吉鹏), Zhenhua Li(李振华), Fen Zhou(周芬), Yuqing Huang(黄雨晴), and Haiqiang Ma(马海强). Chin. Phys. B, 2021, 30(11): 110303.
No Suggested Reading articles found!