|
|
Passive round-robin differential-quadrature-phase-shift quantum key distribution scheme with untrusted detectors |
Hongwei Liu(刘宏伟), Wenxiu Qu(屈文秀), Tianqi Dou(窦天琦), Jipeng Wang(王吉鹏), Yong Zhang(张勇), Haiqiang Ma(马海强) |
School of Science, State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, China |
|
|
Abstract In this paper, we proposed the scheme for a passive round-robin differential-phase-shift quantum key distribution (RRDPS-QKD) set-up based on the principle of Hong-Ou-Mandel interference. Our scheme requires two legitimate parties to prepare their signal state with two different non-orthogonal bases instead of single in original protocol. Incorporating this characteristic, we establish the level of security of our protocol under the intercept-resend attack and demonstrate its detector-flaw-immune feature. Furthermore, we show that our scheme not only inherits the merit of better tolerance of bit errors and finite-sized-key effects but can be implemented using hardware similar to the measurement device independent QKD (MDI-QKD). This ensures good compatibility with the current commonly used quantum system.
|
Received: 13 June 2018
Revised: 27 July 2018
Accepted manuscript online:
|
PACS:
|
03.67.Dd
|
(Quantum cryptography and communication security)
|
|
03.67.Hk
|
(Quantum communication)
|
|
Fund: Project supported by the Fund from the State Key Laboratory of Information Photonics and Optical Communications (Beijing University of Posts and Telecommunications) (Grant No. IPOC2017ZT0). |
Corresponding Authors:
Haiqiang Ma
E-mail: hqma@bupt.edu.cn
|
Cite this article:
Hongwei Liu(刘宏伟), Wenxiu Qu(屈文秀), Tianqi Dou(窦天琦), Jipeng Wang(王吉鹏), Yong Zhang(张勇), Haiqiang Ma(马海强) Passive round-robin differential-quadrature-phase-shift quantum key distribution scheme with untrusted detectors 2018 Chin. Phys. B 27 100309
|
[1] |
Bennett C H, Brassard G 1984 Proceedings ofIEEE International Conference on Computers, Systems, and Signal Processing pp. 175-99
|
[2] |
Yang X Q, Wei K J, Ma H Q, Sun S H, Liu H W, Yin Z Q, Li Z H, Lian S B, Du Y G and Wu L A 2016 Phys. Rev. A 93 052303
|
[3] |
Liu H W, Ma H Q, Wei K J, Yang X Q, Qu W X, Dou T Q, Chen Y T, Li R X and Zhu W 2016 Phys. Lett. A 380 2349
|
[4] |
Wei K J, Ma H Q and Yang J H 2013 Opt. Express 21 16663
|
[5] |
Ma H Q, Wei K J and Yang J H 2013 Opt. Lett. 38 4494
|
[6] |
Tang G Z, Sun S H, Chen H, Li C Y, and Liang L M 2016 Chin. Phys. Lett. 33 120301
|
[7] |
Liu C Q, Zhu C H, Wang L H, Zhang L X and Pei C X 2016 Chin. Phys. Lett. 33 100301
|
[8] |
Ekert A K 1991 Phys. Rev. Lett. 67 661
|
[9] |
Inoue K, Waks E and Yamamoto Y 2002 Phys. Rev. Lett. 89 037902
|
[10] |
Hatakeyama A, Mizutani A, Kato G, Imoto N and Tamaki K 2017 Phys. Rev. A 95 042301
|
[11] |
Inoue K and Iwai Y 2009 Phys. Rev. A 79 022319
|
[12] |
Stucki D, Brunner N, Gisin N, Scarani V and Zbinden H 2005 Appl. Phys. Lett. 87 194108
|
[13] |
Stucki D, Walenta N, Vannel F, Thew R T, Gisin N, Zbinden H, Gray S, Towery C R and Ten S 2009 New. J. Phys. 11 075003
|
[14] |
Lo H K and Chua H F 1999 Science 283 2050
|
[15] |
Shor P W and Preskill J 2000 Phys. Rev. Lett. 85 441
|
[16] |
Moroder T, Curty M, Lim C C W, Thinh L P, Zbinden H and Gisin N 2012 Phys. Rev. Lett. 109 260501
|
[17] |
Kawakami S, Sasaki T and Koashi M 2016 Phys. Rev. A 94 022332
|
[18] |
Curty M, Lewenstein M and Lütkenhaus N 2004 Phys. Rev. Lett. 92 217903
|
[19] |
Sasaki T, Yamamoto Y and Koashi M 2014 Nature 509 475
|
[20] |
Guan J Y, Cao Z, Liu Y, Shen Tu G L, Pelc J S, Fejer M M, Peng C Z, Ma X F, Zhang Q and Pan J W 2015 Phys. Rev. Lett. 114 180502
|
[21] |
Zhou C, Zhang Y Y, Bao W S, Li H W, Wang Y, Peng and Jiang M S 2017 Chin. Phys. B 26 020303
|
[22] |
Cao Z, Yin Z Q and Han Z F 2016 Phys. Rev. A 93 022310
|
[23] |
Iwakoshi T 2015 Proc. SPIE 9505 950504
|
[24] |
Jiao R Z, Zhang C and Ma H Q 2011 Acta Phys. Sin. 60 110303 (in Chinese)
|
[25] |
Zhang Y Y, Bao W S, Zhou C, Li H W, Wang Y and Jiang M S 2017 Chin. Phys. Lett. 34 040301
|
[26] |
Liu L, Guo F Z, Qin S J and Wen Q Y 2017 Sci. Rep. 7 42261
|
[27] |
Lo H K, Lo H K and Chen K 2005 Phys. Rev. Lett. 94 230504
|
[28] |
Gottesman D, Ma X F, Lütkenhaus N and Preskill J 2004 Quantum Inform. Comput. 4 325
|
[29] |
Lydersen L, Wiechers C, Wittmann C, Elser D, Skaar J and Makarov V 2010 Nat. Photon. 4 686
|
[30] |
Wei K J, Liu H W, Ma H Q, Yang X Q, Zhang Y, Sun Y M, Xiao J H and Ji Y F 2017 Sci. Rep. 7 449
|
[31] |
Lim C C W, Korzh B, Martin A, Bussieres F, Thew R and Zbinden H 2014 Appl. Phys. Lett. 105 221112
|
[32] |
Takesue H, Sasaki T, Tamaki K and Koashi M 2015 Nat. Photon. 9 827
|
[33] |
Wang S, Yin Z Q, Chen W, He D Y, Song X T, Li H W, Zhang L J, Zhou Z, Guo G C and Han Z F 2015 Nat. Photon. 9 832
|
[34] |
Li Y H, Cao Y, Dai H, Lin J, Zhang Z, Chen W, Xu Y, Guan J Y, Liao S K, Yin J, Zhang Q, Ma X F, Peng C Z and Pan J W 2016 Phys. Rev. A 93 030302
|
[35] |
Toshihiko S and Masato K 2017 Quantum Sci. Technol. 2 024006
|
[36] |
Yin Z Q, Wang S, Chen W, Han Y G, Wang R, Guo G C and Han Z F 2018 Nat. Commun. 9 457
|
[37] |
Chau H F, Wong C, Wang Q N and Huang T Q 2016 arXiv:1608.08329v1[quant-ph]
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|