Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(10): 100303    DOI: 10.1088/1674-1056/27/10/100303
GENERAL Prev   Next  

Extended Bell inequality and maximum violation

Yan Gu(古燕)1, Haifeng Zhang(张海峰)1, Zhigang Song(宋志刚)1, Jiuqing Liang(梁九卿)1, Lianfu Wei(韦联福)2,3
1 Institute of Theoretical Physics and Department of Physics, State Key Laboratory of Quantum Optics and Quantum Optics Devices, Shanxi University, Taiyuan 030006, China;
2 State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics and Engineering, Sun Yat-Sen University, Guangzhou 510275, China;
3 Quantum Optoelectronics Laboratory, School of Physics and Technology, Southwest Jiaotong University, Chengdu 610031, China
Abstract  

The original formula of Bell inequality (BI) in terms of two-spin singlet has to be modified for the entangled-state with parallel spin polarization. Based on classical statistics of the particle-number correlation, we prove in this paper an extended BI, which is valid for two-spin entangled states with both parallel and antiparallel polarizations. The BI and its violation can be formulated in a unified formalism based on the spin coherent-state quantum probability statistics with the state-density operator, which is separated to the local and non-local parts. The local part gives rise to the BI, while the violation is a direct result of the non-local quantum interference between two components of entangled state. The Bell measuring outcome correlation denoted by PB is always less than or at most equal to one for the local realistic model (PBlc ≤ 1) regardless of the specific superposition coefficients of entangled state. Including the non-local quantum interference the maximum violation of BI is found as PBmax=2, which, however depends on state parameters and three measuring directions as well. Our result is suitable for entangled photon pairs.

Keywords:  Bell inequality      quantum entanglement      non-locality      spin coherent state  
Received:  17 July 2018      Revised:  02 August 2018      Accepted manuscript online: 
PACS:  03.65.Ud (Entanglement and quantum nonlocality)  
  03.67.Lx (Quantum computation architectures and implementations)  
  03.67.Mn (Entanglement measures, witnesses, and other characterizations)  
  42.50.Dv (Quantum state engineering and measurements)  
Fund: 

Project supported in part by the National Natural Science Foundation of China (Grant Nos. 11275118 and U1330201).

Corresponding Authors:  Jiuqing Liang     E-mail:  jqliang@sxu.edu.cn

Cite this article: 

Yan Gu(古燕), Haifeng Zhang(张海峰), Zhigang Song(宋志刚), Jiuqing Liang(梁九卿), Lianfu Wei(韦联福) Extended Bell inequality and maximum violation 2018 Chin. Phys. B 27 100303

[1] Su H Y, Wu Y C and Chen J L 2013 Phys. Rev. A 88 022124
[2] Kwiat P G, Barraza-Lopez S, Stefanov A, et al. 2001 Nature 409 1014
[3] Popescu S 2010 Nat. Phys. 6 151
[4] Nielsen M A and Chuang I L 2011 Quantum Computation and Quantum Information (Cambridge:Cambridge University Press) pp. 1-59
[5] Bennett C H and Divincenzo D P 2000 Nature 404 247
[6] Loss D and DiVincenzo D P 1998 Phys. Rev. A 57 120
[7] Bell J S 1964 Physics 1 195
[8] Waldherr G, Neumann P, Huelga S F, Jelezko F and Wrachtrup J 2011 Phys. Rev. Lett. 107 090401
[9] Sakai H, Saito T, Ikeda T, et al. 2006 Phys. Rev. Lett. 97 150405
[10] Pal K F and Vertesi T 2017 Phys. Rev. A 96 022123
[11] Rowe M A, Kielpinski D, Meyer V, et al. 2001 Nature 409 791
[12] Dada A C, Leach J, Buller G S, et al. 2012 Nat. Phys. 7 677
[13] Gisin N and Peres A 1992 Phys. Lett. A 162 15
[14] Brito S G A, Amaral B and Chaves R 2018 Phys. Rev. A 97 022111
[15] Pozsgay V, Hirsch F, Branciard C, et al. 2017 Phys. Rev. A 96 062128
[16] Groblacher S, Paterek T, Kaltenbaek R, et al. 2007 Nature 446 871
[17] Buhrman H, Cleve R, Massar S, et al. 2010 Rev. Mod. Phys. 82 665
[18] Cabello A and Sciarrino F 2012 Phys. Rev. X 2 021010
[19] Wei L F, Liu Y X, and Nori F 2005 Phys. Rev. B 72 104516
[20] Garcia-Patron R, Fiurasek J, Cerf N J, et al. 2004 Phys. Rev. Lett. 93 130409
[21] Hess K, Raedt H D and Michielsen K 2017 J. Mod. Phys. 8 57
[22] Clauser J F, Horne M A, Shimony A and Holt R A 1969 Phys. Rev. Lett. 23 880
[23] Wigner E P 1970 Am. J. Phys. 38 1005
[24] Sakurai J J, Tuan S F and Commins E D 1995 Am. J. Phys. 63 93
[25] Home D, Saha D and Das S 2015 Phys. Rev. A 91 012102
[26] Das D, Datta S, Goswami S, Majumdar A S and Home D 2017 Phys. Lett. A 381 3396
[27] Pawlowski M, Paterek T, Kaszlikowski D, Scarani V, Winter A and Zukowski M 2009 Nature 461 1101
[28] Song Z, Liang J Q and Wei L F 2014 Mod. Phys. Lett. B 28 1450004
[29] Zhang H, Wang J, Song Z, et al. 2017 Mod. Phys. Lett. B 31 1750032
[30] Grimme S 2003 J. Chem. Phys. 118 9095
[31] Gu Y, Zhang H, Song Z, Liang J Q and Wei L F 2018 Int. J. Quantum Inform. 16 1850041
[32] Hensen B, Bernien H, Dréau A E, et al. 2015 Nature 526 682
[33] Hensen B, Kalb N, Blok M S, et al. 2016 Sci. Rep. 6 30289
[34] Yin J, Cao Y, Li Y H, Liao S K, Zhang L, Ren J G, Cai W Q and Liu W Y 2017 Science 356 1140
[35] Liang J Q and Wei L F 2011 New Advances in Quantum Physics (Beijing:Science Press) p. 56
[36] Bai X M, Gao C P, Li J Q and Liang J Q 2017 Opt. Express 25 17051
[37] Zhao X Q, Liu N and Liang J Q 2014 Phys. Rev. A 90 023622
[1] Entanglement and thermalization in the extended Bose-Hubbard model after a quantum quench: A correlation analysis
Xiao-Qiang Su(苏晓强), Zong-Ju Xu(许宗菊), and You-Quan Zhao(赵有权). Chin. Phys. B, 2023, 32(2): 020506.
[2] Characterizing entanglement in non-Hermitian chaotic systems via out-of-time ordered correlators
Kai-Qian Huang(黄恺芊), Wei-Lin Li(李蔚琳), Wen-Lei Zhao(赵文垒), and Zhi Li(李志). Chin. Phys. B, 2022, 31(9): 090301.
[3] Nonreciprocal coupling induced entanglement enhancement in a double-cavity optomechanical system
Yuan-Yuan Liu(刘元元), Zhi-Ming Zhang(张智明), Jun-Hao Liu(刘军浩), Jin-Dong Wang(王金东), and Ya-Fei Yu(於亚飞). Chin. Phys. B, 2022, 31(9): 094203.
[4] Nonclassicality of photon-modulated spin coherent states in the Holstein—Primakoff realization
Xiaoyan Zhang(张晓燕), Jisuo Wang(王继锁), Lei Wang(王磊),Xiangguo Meng(孟祥国), and Baolong Liang(梁宝龙). Chin. Phys. B, 2022, 31(5): 054205.
[5] Bright 547-dimensional Hilbert-space entangled resource in 28-pair modes biphoton frequency comb from a reconfigurable silicon microring resonator
Qilin Zheng(郑骑林), Jiacheng Liu(刘嘉成), Chao Wu(吴超), Shichuan Xue(薛诗川), Pingyu Zhu(朱枰谕), Yang Wang(王洋), Xinyao Yu(于馨瑶), Miaomiao Yu(余苗苗), Mingtang Deng(邓明堂), Junjie Wu(吴俊杰), and Ping Xu(徐平). Chin. Phys. B, 2022, 31(2): 024206.
[6] Influences of spin-orbit interaction on quantum speed limit and entanglement of spin qubits in coupled quantum dots
M Bagheri Harouni. Chin. Phys. B, 2021, 30(9): 090301.
[7] Nonlocal advantage of quantum coherence and entanglement of two spins under intrinsic decoherence
Bao-Min Li(李保民), Ming-Liang Hu(胡明亮), and Heng Fan(范桁). Chin. Phys. B, 2021, 30(7): 070307.
[8] Entanglement properties of GHZ and W superposition state and its decayed states
Xin-Feng Jin(金鑫锋), Li-Zhen Jiang(蒋丽珍), and Xiao-Yu Chen(陈小余). Chin. Phys. B, 2021, 30(6): 060301.
[9] Quantifying entanglement in terms of an operational way
Deng-Hui Yu(于登辉) and Chang-Shui Yu(于长水). Chin. Phys. B, 2021, 30(2): 020302.
[10] Reversion of weak-measured quantum entanglement state
Shao-Jiang Du(杜少将), Yonggang Peng(彭勇刚), Hai-Ran Feng(冯海冉), Feng Han(韩峰), Lian-Wu Yang(杨连武), Yu-Jun Zheng(郑雨军). Chin. Phys. B, 2020, 29(7): 074202.
[11] Qubit movement-assisted entanglement swapping
Sare Golkar, Mohammad Kazem Tavassoly, Alireza Nourmandipour. Chin. Phys. B, 2020, 29(5): 050304.
[12] Quantum speed limit time and entanglement in a non-Markovian evolution of spin qubits of coupled quantum dots
M. Bagheri Harouni. Chin. Phys. B, 2020, 29(12): 124203.
[13] Protecting the entanglement of two-qubit over quantum channels with memory via weak measurement and quantum measurement reversal
Mei-Jiao Wang(王美姣), Yun-Jie Xia(夏云杰), Yang Yang(杨阳), Liao-Zhen Cao(曹连振), Qin-Wei Zhang(张钦伟), Ying-De Li(李英德), and Jia-Qiang Zhao(赵加强). Chin. Phys. B, 2020, 29(11): 110307.
[14] Hidden Anderson localization in disorder-free Ising–Kondo lattice
Wei-Wei Yang(杨薇薇), Lan Zhang(张欄), Xue-Ming Guo(郭雪明), and Yin Zhong(钟寅)†. Chin. Phys. B, 2020, 29(10): 107301.
[15] Geometrical quantum discord and negativity of two separable and mixed qubits
Tang-Kun Liu(刘堂昆), Fei Liu(刘飞), Chuan-Jia Shan(单传家), Ji-Bing Liu(刘继兵). Chin. Phys. B, 2019, 28(9): 090304.
No Suggested Reading articles found!