Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(9): 090304    DOI: 10.1088/1674-1056/ab37f6
GENERAL Prev   Next  

Geometrical quantum discord and negativity of two separable and mixed qubits

Tang-Kun Liu(刘堂昆), Fei Liu(刘飞), Chuan-Jia Shan(单传家), Ji-Bing Liu(刘继兵)
College of Physics and Electronic Science, Hubei Normal University, Huangshi 435002, China

We studied quantum correlation and quantum entanglement of a quantum system in which a coherent state light field interacts with two qubits that are initially prepared in a separable and mixed state. The influence of mean photon number of the coherent field and distribution probability of the atom on the geometrical quantum discord and the negativity are discussed. Our results show that the mean photon number of light field and distribution function of the atom can regulate and control the quantum correlation and quantum entanglement.

Keywords:  geometrical quantum discord      quantum correlation      negativity      quantum entanglement  
Received:  08 May 2019      Revised:  09 July 2019      Accepted manuscript online: 
PACS:  03.65.Ud (Entanglement and quantum nonlocality)  
  42.50.Pq (Cavity quantum electrodynamics; micromasers)  

Project supported by the National Natural Science Foundation of China (Grant No. 11604090).

Corresponding Authors:  Tang-Kun Liu     E-mail:

Cite this article: 

Tang-Kun Liu(刘堂昆), Fei Liu(刘飞), Chuan-Jia Shan(单传家), Ji-Bing Liu(刘继兵) Geometrical quantum discord and negativity of two separable and mixed qubits 2019 Chin. Phys. B 28 090304

[1] Nielsen M A and Chuang I L 2000 Quantum Computation and Quantum Information (Cambridy:Cambridy University Press)
[2] Peres A 1996 Phys. Rev. Lett. 77 1413
[3] Zheng S B and Guo G C 2000 Phys. Rev. Lett. 85 2392
[4] Horodecki R, Horodecki P, Horodecki M, et al. 2009 Rev. Mod. Phys. 81 865
[5] Lu C Y, Yang T and Pan J W 2009 Phys. Rev. Lett. 103 020501
[6] Pan J W, Chen Z B, Lu C Y, et al. 2012 Rev. Mod. Phys. 84 777
[7] Yao X C, Wang T X, Chen H Z, et al. 2012 Nature 482 489
[8] Ollivier H and Zurek W H 2001 Phys. Rev. Lett. 88 017901
[9] Chen L, Chitambar E, Modi K and Vacanti G 2011 Phys. Rev. A 83 020101
[10] Li Bo, Wang Z X and Fei S M 2011 Phys. Rev. A 83 022321
[11] Fanchini F F, Werlang T, Brasil C A, Arruda L G E and Caldeira A O 2010 Phys. Rev. A 81 052107
[12] Ali M, Ran A R P and Alber G 2010 Phys. Rev. A 81 042105
[13] Wang B, Xu Z Y, Chen Z Q and Feng M 2010 Phys. Rev. A 81 014101
[14] Liu D, Zhao X and Long G L 2010 Commun. Theor. Phys. 54 825
[15] Rulli C C and Sarandy M S 2011 Phys. Rev. A 84 042109
[16] Cao Y, Li H and Long G L 2013 Chin. Sci. Bull. 58 48
[17] Dakic B, Vedral V and Brukner C 2010 Phys. Rev. Lett. 105 190502
[18] Werlang T and Rigolin G 2010 Phys. Rev. A 81 044101
[19] Xu P, Wu T and Ye L 2015 Int. J. Theor. Phys. 54 1958
[20] Qin W and Guo J L 2015 Int. J. Theor. Phys. 54 2386
[21] Liu T K, Tao Y, Shan C J and Liu J B 2016 Int. J. Theor. Phys. 554219
[22] Liu T K, Zhang K L, Tao Y, Shan C J and Liu J B 2016 Chin. Phys. B 25070304
[23] Tavis M and Cummings F W 1968 Phys. Rev. 170 379
[1] Entanglement and thermalization in the extended Bose-Hubbard model after a quantum quench: A correlation analysis
Xiao-Qiang Su(苏晓强), Zong-Ju Xu(许宗菊), and You-Quan Zhao(赵有权). Chin. Phys. B, 2023, 32(2): 020506.
[2] Nonreciprocal coupling induced entanglement enhancement in a double-cavity optomechanical system
Yuan-Yuan Liu(刘元元), Zhi-Ming Zhang(张智明), Jun-Hao Liu(刘军浩), Jin-Dong Wang(王金东), and Ya-Fei Yu(於亚飞). Chin. Phys. B, 2022, 31(9): 094203.
[3] Characterizing entanglement in non-Hermitian chaotic systems via out-of-time ordered correlators
Kai-Qian Huang(黄恺芊), Wei-Lin Li(李蔚琳), Wen-Lei Zhao(赵文垒), and Zhi Li(李志). Chin. Phys. B, 2022, 31(9): 090301.
[4] Robustness of two-qubit and three-qubit states in correlated quantum channels
Zhan-Yun Wang(王展云), Feng-Lin Wu(吴风霖), Zhen-Yu Peng(彭振宇), and Si-Yuan Liu(刘思远). Chin. Phys. B, 2022, 31(7): 070302.
[5] Bright 547-dimensional Hilbert-space entangled resource in 28-pair modes biphoton frequency comb from a reconfigurable silicon microring resonator
Qilin Zheng(郑骑林), Jiacheng Liu(刘嘉成), Chao Wu(吴超), Shichuan Xue(薛诗川), Pingyu Zhu(朱枰谕), Yang Wang(王洋), Xinyao Yu(于馨瑶), Miaomiao Yu(余苗苗), Mingtang Deng(邓明堂), Junjie Wu(吴俊杰), and Ping Xu(徐平). Chin. Phys. B, 2022, 31(2): 024206.
[6] Quantum steerability of two qubits mediated by one-dimensional plasmonic waveguides
Ye-Qi Zhang(张业奇), Xiao-Ting Ding(丁潇婷), Jiao Sun(孙娇), and Tian-Hu Wang(王天虎). Chin. Phys. B, 2022, 31(12): 120305.
[7] Quantum correlation and entropic uncertainty in a quantum-dot system
Ying-Yue Yang(杨颖玥), Li-Juan Li(李丽娟), Liu Ye(叶柳), and Dong Wang(王栋). Chin. Phys. B, 2022, 31(10): 100303.
[8] Protection of entanglement between two V-atoms in a multi-cavity coupling system
Wen-Jin Huang(黄文进), Mao-Fa Fang(方卯发), and Xiong Xu(许雄). Chin. Phys. B, 2022, 31(1): 010301.
[9] Influences of spin-orbit interaction on quantum speed limit and entanglement of spin qubits in coupled quantum dots
M Bagheri Harouni. Chin. Phys. B, 2021, 30(9): 090301.
[10] Effects of initial states on the quantum correlations in the generalized Grover search algorithm
Zhen-Yu Chen(陈祯羽), Tian-Hui Qiu(邱田会), Wen-Bin Zhang(张文彬), and Hong-Yang Ma(马鸿洋). Chin. Phys. B, 2021, 30(8): 080303.
[11] Nonlocal advantage of quantum coherence and entanglement of two spins under intrinsic decoherence
Bao-Min Li(李保民), Ming-Liang Hu(胡明亮), and Heng Fan(范桁). Chin. Phys. B, 2021, 30(7): 070307.
[12] Entanglement properties of GHZ and W superposition state and its decayed states
Xin-Feng Jin(金鑫锋), Li-Zhen Jiang(蒋丽珍), and Xiao-Yu Chen(陈小余). Chin. Phys. B, 2021, 30(6): 060301.
[13] Quasi-delta negative ions density of Ar/O2 inductively coupled plasma at very low electronegativity
Shu-Xia Zhao(赵书霞). Chin. Phys. B, 2021, 30(5): 055201.
[14] Measurement of electronegativity during the E to H mode transition in a radio frequency inductively coupled Ar/O2 plasma
Peng-Cheng Du(杜鹏程), Fei Gao(高飞, Xiao-Kun Wang(王晓坤), Yong-Xin Liu(刘永新), and You-Nian Wang(王友年). Chin. Phys. B, 2021, 30(3): 035202.
[15] Quantifying entanglement in terms of an operational way
Deng-Hui Yu(于登辉) and Chang-Shui Yu(于长水). Chin. Phys. B, 2021, 30(2): 020302.
No Suggested Reading articles found!