Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(10): 100302    DOI: 10.1088/1674-1056/27/10/100302
GENERAL Prev   Next  

Controlling of entropic uncertainty in open quantum system via proper placement of quantum register

Ying-Hua Ji(嵇英华)1,2, Qiang Ke(柯强)1,2, Ju-Ju Hu(胡菊菊)1,2
1 College of Physics and Communication Electronics, Jiangxi Normal University, Nanchang 330022, China;
2 Key Laboratory of Photoelectronics and Telecommunication of Jiangxi Province, Nanchang 330022, China
Abstract  

We investigate the dynamical behaviors of quantum-memory-assisted entropic uncertainty and its lower bound in the amplitude-damping channel. The influences of different placement positions of the quantum register on the dynamics of quantum coherence, quantum entanglement, and quantum discord are analyzed in detail. The numerical simulation results show that the quantum register should be placed in the channel of the non-Markovian effect. This option is beneficial to reduce the entropic uncertainty and its lower bound. We also find that this choice does not change the evolution of the quantum coherence and quantum entanglement, but changes the dynamical process of the quantum discord of the system. These results show that quantum coherence, quantum entanglement, and quantum discord are different quantum resources with unique characteristics and properties, and quantum discord can play a key role in reducing the uncertainty of quantum systems.

Keywords:  quantum-memory-assisted      entropic uncertainties      quantum register      open quantum system  
Received:  28 May 2018      Revised:  19 July 2018      Accepted manuscript online: 
PACS:  03.65.Ta (Foundations of quantum mechanics; measurement theory)  
  05.40.Ca (Noise)  
  03.65.Yz (Decoherence; open systems; quantum statistical methods)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 11264015 and 11404150).

Corresponding Authors:  Ju-Ju Hu     E-mail:  jyh2006@jxnu.edu.cn

Cite this article: 

Ying-Hua Ji(嵇英华), Qiang Ke(柯强), Ju-Ju Hu(胡菊菊) Controlling of entropic uncertainty in open quantum system via proper placement of quantum register 2018 Chin. Phys. B 27 100302

[1] Bromley T R, Cianciaruso M and Adesso G 2015 Phys. Rev. Lett. 114 210401
[2] Ollivier H and Zurek W H 2001 Phys. Rev. Lett. 88 017901
[3] Asboth J K, Calsamiglia J and Ritsch H 2005 Phys. Rev. Lett. 94 173602
[4] Datta A and Gharibian S 2009 Phys. Rev. A 79 042325
[5] Luo S 2008 Phys. Rev. A 77 042303
[6] Oppenheim J, Horodecki M, Horodecki P and Horodecki R 2002 Phys. Rev. Lett. 89 180402
[7] Datta A, Shaji A and Caves C M 2008 Phys. Rev. Lett. 100 050502
[8] Levi F and Mintert F 2014 New J. Phys. 16 033007
[9] Marvian I and Spekkens R W 2013 New J. Phys. 15 033001
[10] Ma J, Yadin B, Girolami D, Vedral V and Gu M 2016 Phys. Rev. Lett. 116 160407
[11] Streltsov A, Singh U, Dhar H S, Bera M N and Adesso G 2015 Phys. Rev. Lett. 115 020403
[12] Heisenberg W 1927 Z. Phys. 43 172
[13] Kennard E H 1927 Z. Phys. 44 326
[14] Robertson H P 1929 Phys. Rev. 34 163
[15] Bialynicki-Birula I 1984 Phys. Lett. A 103 253
[16] Deutsch D 1983 Phys. Rev. Lett. 50 631
[17] Kraus K 1987 Phys. Rev. D 35 3070
[18] Maassen H and Uffink J B M 1988 Phys. Rev. Lett. 60 1103
[19] Berta M, Christandl M, Colbeck R, Renes J M and Renner R 2010 Nat. Phys. 6 659
[20] Xiang Z L, Ashhab S, You J Q and Nori F 2013 Rev. Mod. Phys. 85 623
[21] Li C F, Xu J S, Xu X Y, Li K and Guo G C 2011 Nat. Phys. 7 752
[22] Prevedel R, Hamel D R, Colbeck R, Fisher K and Resch K J 2011 Nat. Phys. 7 757
[23] Wang D, Huang A J, Ming F, Sun W Y, Lu H P, Liu C C and Ye L 2017 Laser Phys. Lett. 14 065203
[24] Wang D, Huang A J, Hoehn R D, Ming F, Sun W Y, Shi J D, Ye L and Kais S 2017 Sci. Rep. 7 1066
[25] Wang D, Ming F, Huang A J, Sun W Y and Ye L 2017 Laser Phys. Lett. 14 095204
[26] Zhang Y L, Fang M F, Kang G D and Zhou Q P 2015 Int. J. Quantum Inf. 13 1550037
[27] Ming F, Wang D, Shi W N, Huang A J, Sun W Y and Ye L 2018 Quantum Inf. Process. 17 89
[28] Yu M and Fang M F 2017 Quantum Inf. Process. 16 213
[29] Zou H M and Fang M F 2016 Chin. Phys. Lett. 33 070307
[30] Hu M L and Fan H 2012 Phys. Rev. A 86 032338
[31] Pati A K, Wilde M M, Devi A R U, Rajagopal A K and Sudha X X 2012 Phys. Rev. A 86 042105
[32] Zhang J, Zhang Y and Yu C S 2015 Sci. Rep. 5 11701
[33] Hu J J and Ke Q 2016 Optik 127 3950
[34] Zhang Y L, Fang M F, Kang G D and Zhou Q P 2018 Quantum Inf. Process. 17 62
[35] Ji Y H, Hu J J and Ke Q 2018 Int. J. Control Autom. Syst. 16 55
[36] Xu Z Y, Yang W L and Feng M 2012 Phys. Rev. A 86 012113
[37] Zou H M, Fang M F, Yang B Y, Guo Y N, He W and Zhang S Y 2014 Phys. Scr. 89 115101
[38] Chen M N, Sun W Y, Huang A J, Ming F, Wang D and Ye L 2018 Laser Phys. Lett. 15 015207
[39] Zhang S Y, Fang M F, Zhang Y L, Guo Y N, Tang W W and Zhao Y J 2015 Chin. Phys. B 24 090304
[40] Konrad T, de Melo F, Tiersch M, Kasztelan C, Aragao A and Buchleitner A 2008 Nat. Phys. 4 99
[41] Hu J J and Li S 2014 Commun. Theor. Phys. 62 183
[42] Li J G, Zou J and Shao B 2010 Phys. Rev. A 81 062124
[43] Bellomo B, Franco R L and Compagno G 2007 Phys. Rev. Lett. 99 160502
[44] Wang D, Ming F, Huang A J, Sun W Y, Shi J D and Ye L 2017 Laser Phys. Lett. 14 055205
[45] Wootters W K 1998 Phys. Rev. Lett. 80 2245
[46] Baumgratz T, Cramer M and Plenio M B 2014 Phys. Rev. Lett. 113 140401
[47] Hu J J, Liu S Q and Ji Y H 2018 Int. J. Quantum Inf. 16 1850022
[48] Sarandy M S 2009 Phys. Rev. A 80 022108
[49] Wang C Z, Li C X, Nie L Y and Li J F 2011 J. Phys. B:At. Mol. Opt. Phys. 44 015503
[1] Geometric phase under the Unruh effect with intermediate statistics
Jun Feng(冯俊), Jing-Jun Zhang(张精俊), and Qianyi Zhang(张倩怡). Chin. Phys. B, 2022, 31(5): 050312.
[2] Dynamical learning of non-Markovian quantum dynamics
Jintao Yang(杨锦涛), Junpeng Cao(曹俊鹏), and Wen-Li Yang(杨文力). Chin. Phys. B, 2022, 31(1): 010314.
[3] Influences of spin-orbit interaction on quantum speed limit and entanglement of spin qubits in coupled quantum dots
M Bagheri Harouni. Chin. Phys. B, 2021, 30(9): 090301.
[4] Fine-grained uncertainty relation for open quantum system
Shang-Bin Han(韩尚斌), Shuai-Jie Li(李帅杰), Jing-Jun Zhang(张精俊), and Jun Feng(冯俊). Chin. Phys. B, 2021, 30(6): 060315.
[5] Application of non-Hermitian Hamiltonian model in open quantum optical systems
Hong Wang(王虹), Yue Qin(秦悦), Jingxu Ma(马晶旭), Heng Shen(申恒), Ying Hu(胡颖), and Xiaojun Jia(贾晓军). Chin. Phys. B, 2021, 30(5): 050301.
[6] Optimal parameter estimation of open quantum systems
Yinghua Ji(嵇英华), Qiang Ke(柯强), and Juju Hu(胡菊菊). Chin. Phys. B, 2020, 29(12): 120303.
[7] Quantum speed limit time and entanglement in a non-Markovian evolution of spin qubits of coupled quantum dots
M. Bagheri Harouni. Chin. Phys. B, 2020, 29(12): 124203.
[8] Influence of homodyne-based feedback control on the entropic uncertainty in open quantum system
Juju Hu(胡菊菊), Qin Xue(薛琴). Chin. Phys. B, 2019, 28(7): 070303.
[9] Dynamical control of population and entanglement for open Λ-type atoms by engineering the environment
Xiao-Lan Wang(王晓岚), Yu-Kun Ren(任玉坤), Hao-Sheng Zeng(曾浩生). Chin. Phys. B, 2019, 28(3): 030301.
[10] Nonlinear dissipative dynamics of a two-component atomic condensate coupling with a continuum
Zhong Hong-Hua (钟宏华), Xie Qiong-Tao (谢琼涛), Xu Jun (徐军), Hai Wen-Hua (海文华), Li Chao-Hong (李朝红). Chin. Phys. B, 2014, 23(2): 020314.
[11] Comparison between non-Markovian dynamics with and without rotating wave approximation
Tang Ning (唐宁), Xu Tian-Tian (徐甜甜), Zeng Hao-Sheng (曾浩生). Chin. Phys. B, 2013, 22(3): 030304.
[12] Distribution of non-Markovian intervals for open qubit systems
Zheng Yan-Ping(郑艳萍), Tang Ning(唐宁), Wang Guo-You(王国友), and Zeng Hao-Sheng(曾浩生) . Chin. Phys. B, 2011, 20(11): 110301.
No Suggested Reading articles found!