Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(6): 067803    DOI: 10.1088/1674-1056/26/6/067803

Super scattering phenomenon in active spherical nanoparticles

Chang-Yu Liu(刘昌宇)1, Ya-Ming Xie(解亚明)2,3, Zhi-Guo Wang(王治国)1
1 School of Physics Science and Engineering, Tongji University, Shanghai 200092, China;
2 Beijing Computational Science Research Center, Beijing 100193, China;
3 Department of Physics, University of Science and Technology of China, Hefei 230026, China

Localized surface electromagnetic resonances in spherical nanoparticles with gain are investigated by using the Mie theory. Due to the coupling between the gain and resonances, super scattering phenomenon is raised and the total scattering efficiency is increased by over six orders of magnitude. The dual frequency resonance induced by the electric dipole term of the particle is observed. The distributions of electromagnetic field and the Poynting vector around nanoparticles are provided for better understanding different multipole resonances. Finally, the scattering properties of active spherical nanoparticles are investigated when the sizes of nanoparticles are beyond the quasi-static limit. It is noticed that more high-order multipole resonances can be excited with the increase of the radius. Besides, all resonances dominated by multipole magnetic terms can only appear in dielectric materials.

Keywords:  super scattering      gain      plasmonic resonance      Mie theory  
Received:  14 October 2016      Revised:  05 February 2017      Accepted manuscript online: 
PACS:  78.67.-n (Optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures)  
  42.70.-a (Optical materials)  
  42.25.Fx (Diffraction and scattering)  
  52.38.-r (Laser-plasma interactions)  

Project supported by the National Natural Science Foundation of China (Grant Nos. 11174222 and 91230203).

Corresponding Authors:  Zhi-Guo Wang     E-mail:

Cite this article: 

Chang-Yu Liu(刘昌宇), Ya-Ming Xie(解亚明), Zhi-Guo Wang(王治国) Super scattering phenomenon in active spherical nanoparticles 2017 Chin. Phys. B 26 067803

[1] Barnes W L, Dereux A and Ebbesen T W 2003 Nature 424 824
[2] Avrutsky I 2004 Phys. Rev. B 70 155416
[3] Li Z Y and Xia Y 2010 Nano. Lett. 10 243
[4] Ma Y W, Wu Z W, Zhang L H, Liu W F and Zhang J 2015 Chin. Phys. Lett. 32 094202
[5] Liedberg B, Nylander C and Lunström I 1983 Sensors & Actuators 4 299
[6] Homola J, Yee S S and Gauglitz G 1999 Sensors & Actuators B-Chemical 54 3
[7] Ozaki M, Kato J and Kawata S 2011 Science 332 218
[8] Schurig D, Mock J J, Justice B J, Cummer S A, Pendry J B, Starr A F and Smith D R 2006 Science 314 977
[9] Khurgin J B 2015 Nat. Nanotechnol. 10 2
[10] De Luca A, Ferrie M, Ravaine S, La Deda M, Infusino M, Rashed A R, Veltri A, Aradian A, Scaramuzza N and Strangi G 2012 J. Mater. Chem. 22 8846
[11] Veltri A and Aradian A 2012 Phys. Rev. B 85 115429
[12] Zhu W R, Rukhlenko I D and Premaratne M 2012 Appl. Phys. Lett. 101 031907
[13] Wu D J, Wu X W, Cheng Y, Jin B B and Liu X J 2015 Appl. Phys. Lett. 107 191909
[14] Gather M C, Meerholz K, Danz N and Leosson K 2010 Nat. Photon. 4 457
[15] Alivisatos A P 1996 Science 271 933
[16] Klimov V I, Mikhailovsky A A, Xu S, Malko A, Hollingsworth J A, Leatherdale C A, Eisler H and Bawendi M G 2000 Science 290 314
[17] Stockman M I 2008 Nat. Photon. 2 327
[18] Hess O, Pendry J B, Maier S A, Oulton R F, Hamm J M and Tsakmakidis K L 2012 Nat. Mater. 11 573
[19] Wuestner S, Pusch A, Tsakmakidis K L, Hamm J M and Hess O 2010 Phys. Rev. Lett. 105 127401
[20] Xiao S, Drachev V P, Kildishev A V, Ni X, Chettiar U K, Yuan H K and Shalaev V M 2010 Nature 466 735
[21] Ding P, He J N, Wang J Q, Fan C Z, Cai G W and Liang E J 2013 J. Opt. 15 105001
[22] Tao Y F, Guo Z Y, Sun Y X, Shen F, Mao X Q, Wang W, Li Y, Liu Y, Wang X S and Qu S L 2015 Opt. Commun. 355 580
[23] Zhang H P, Zhou J, Zou W B and He M 2012 J. Appl. Phys. 112 074309
[24] Xie Y M, Tan W and Wang Z G 2015 Opt. Express 23 2091
[25] Liu Z, He C, Zhang D L, Li C B, Xue C L, Zuo Y H and Cheng B W 2016 Chin. Phys. B 25 057804
[26] Liu J F, Sun X C, Kimerling L C and Michel J 2009 Opt. Lett. 34 1738
[27] Ordal M A, Bell R J, Alexander R W, Long L L and Querry M R 1985 Appl. Opt. 24 4493
[28] Leonhardt U and Philbin T G 2007 New J. Phys. 9 254
[29] Johnson P B and Christy R W 1972 Phys. Rev. B 6 4370
[30] Bohren C F and Huffman D R 1998 Absorption and Scattering of Light by Small Particles (New York: Wiley) pp. 97-102
[31] Tribelsky M I and Luk'yanchuk B S 2006 Phys. Rev. Lett. 97 263902
[32] Plum E, Fedotov V A, Kuo P, Tsai D P and Zheludev N I 2009 Opt. Express 17 8548
[33] Stockman M I 2010 J. Opt. 12 024004
[34] Evlyukhin A B, Novikov S M, Zywietz U, Eriksen R L, Reinhardt C, Bozhevolnyi S I and Chichkov B N 2012 Nano Lett. 12 3749
[1] High gain and circularly polarized substrate integrated waveguide cavity antenna array based on metasurface
Hao Bai(白昊), Guang-Ming Wang(王光明), and Xiao-Jun Zou(邹晓鋆). Chin. Phys. B, 2023, 32(1): 014101.
[2] Tolerance-enhanced SU(1,1) interferometers using asymmetric gain
Jian-Dong Zhang(张建东) and Shuai Wang(王帅). Chin. Phys. B, 2023, 32(1): 010306.
[3] Parity-time symmetric acoustic system constructed by piezoelectric composite plates with active external circuits
Yang Zhou(周扬), Zhang-Zhao Yang(杨彰昭), Yao-Yin Peng(彭尧吟), and Xin-Ye Zou(邹欣晔). Chin. Phys. B, 2022, 31(6): 064304.
[4] Impact of symmetric gate-recess length on the DC and RF characteristics of InP HEMTs
Ruize Feng(封瑞泽), Bo Wang(王博), Shurui Cao(曹书睿), Tong Liu(刘桐), Yongbo Su(苏永波), Wuchang Ding(丁武昌), Peng Ding(丁芃), and Zhi Jin(金智). Chin. Phys. B, 2022, 31(1): 018505.
[5] Characteristic mode analysis of wideband high-gain and low-profile metasurface antenna
Kun Gao(高坤), Xiang-Yu Cao(曹祥玉), Jun Gao(高军), Huan-Huan Yang(杨欢欢), and Jiang-Feng Han(韩江枫). Chin. Phys. B, 2021, 30(6): 064101.
[6] Graphene-tuned threshold gain to achieve optical pulling force on microparticle
Hong-Li Chen(陈鸿莉) and Yang Huang(黄杨). Chin. Phys. B, 2021, 30(6): 064205.
[7] Multiple scattering and modeling of laser in fog
Ji-Yu Xue(薛积禹), Yun-Hua Cao(曹运华), Zhen-Sen Wu(吴振森), Jie Chen(陈杰), Yan-Hui Li(李艳辉), Geng Zhang(张耿), Kai Yang(杨凯), and Ruo-Ting Gao(高若婷). Chin. Phys. B, 2021, 30(6): 064206.
[8] An easily-prepared impedance matched Josephson parametric amplifier
Ya-Peng Lu(卢亚鹏), Quan Zuo(左权), Jia-Zheng Pan(潘佳政), Jun-Liang Jiang(江俊良), Xing-Yu Wei(魏兴雨), Zi-Shuo Li(李子硕), Wen-Qu Xu(许问渠), Kai-Xuan Zhang(张凯旋), Ting-Ting Guo(郭婷婷), Shuo Wang(王硕), Chun-Hai Cao(曹春海), Wei-Wei Xu(许伟伟), Guo-Zhu Sun(孙国柱), and Pei-Heng Wu(吴培亨). Chin. Phys. B, 2021, 30(6): 068504.
[9] Brillouin gain spectrum characterization in Ge-doped large-mode-area fibers
Xia-Xia Niu(牛夏夏), Yi-Feng Yang(杨依枫), Zhao Quan(全昭), Chun-Lei Yu(于春雷), Qin-Ling Zhou(周秦岭), Hui Shen(沈辉), Bing He(何兵), and Jun Zhou(周军). Chin. Phys. B, 2021, 30(12): 124203.
[10] Suppression of persistent photoconductivity in high gain Ga2O3 Schottky photodetectors
Haitao Zhou(周海涛), Lujia Cong(丛璐佳), Jiangang Ma(马剑钢), Bingsheng Li(李炳生), Haiyang Xu(徐海洋), and Yichun Liu(刘益春). Chin. Phys. B, 2021, 30(12): 126104.
[11] Controllable and switchable chiral near-fields in symmetric graphene metasurfaces
Li Hu(胡莉), Hongxia Dai(代洪霞), Fayin Cheng(程发银), and Yuxia Tang(唐裕霞). Chin. Phys. B, 2021, 30(12): 127303.
[12] Gain-induced large optical torque in optical twist settings
Genyan Li(李艮艳), Xiao Li(李肖), Lei Zhang(张磊), Jun Chen(陈君). Chin. Phys. B, 2020, 29(8): 084201.
[13] Reversion of weak-measured quantum entanglement state
Shao-Jiang Du(杜少将), Yonggang Peng(彭勇刚), Hai-Ran Feng(冯海冉), Feng Han(韩峰), Lian-Wu Yang(杨连武), Yu-Jun Zheng(郑雨军). Chin. Phys. B, 2020, 29(7): 074202.
[14] Selective excitation of multipolar surface plasmon in a graphene-coated dielectric particle by Laguerre Gaussian beam
Yang Yang(杨阳), Guanghua Zhang(张光华), Xiaoyu Dai(戴小玉). Chin. Phys. B, 2020, 29(5): 057302.
[15] High-dimensional atomic microscopy in surface plasmon polaritons
Akhtar Munir, Abdul Wahab, and Munsif Jan. Chin. Phys. B, 2020, 29(12): 124204.
No Suggested Reading articles found!