Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(6): 064205    DOI: 10.1088/1674-1056/abd9b4
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Graphene-tuned threshold gain to achieve optical pulling force on microparticle

Hong-Li Chen(陈鸿莉)1,† and Yang Huang(黄杨)2
1 School of Science, Nantong University, Nantong 226019, China;
2 School of Science, Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology, Jiangnan University, Wuxi 214122, China
Abstract  We investigate optical force on a graphene-coated gain microparticle by adopting the Maxwell's stress tensor method. It is found that there exists a threshold gain in obtaining the Fano-profile optical force which indicates the reversal of optical pushing and pulling force. And giant pushing/pulling force can be achieved if the gain value of the material is in the proximity of the threshold gain. Our results show that the threshold gain is more sensitive to the relaxation time than to the Fermi energy of the graphene. We further study the optical force on larger microparticle to demonstrate the pulling force occurring at octupole resonance with small gain value and then it will appear at quadrupole resonance by increasing gain value. Our work provides an in-depth insight into the interaction between light and gain material and gives the additional degree of freedom to optical manipulation of microparticle.
Keywords:  pulling force      threshold gain      graphene      microparticle  
Received:  11 November 2020      Revised:  06 January 2021      Accepted manuscript online:  08 January 2021
PACS:  42.50.Wk (Mechanical effects of light on material media, microstructures and particles)  
  42.60.Lh (Efficiency, stability, gain, and other operational parameters)  
  78.67.Wj (Optical properties of graphene)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11904184, 11847033, and 11704158) and the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20170170).
Corresponding Authors:  Hong-Li Chen     E-mail:  chenhongli@ntu.edu.cn

Cite this article: 

Hong-Li Chen(陈鸿莉) and Yang Huang(黄杨) Graphene-tuned threshold gain to achieve optical pulling force on microparticle 2021 Chin. Phys. B 30 064205

[1] Chen J, Ng J, Lin Z F and Chan C T 2011 Nat. Photon. 5 531
[2] Novitsky A, Qiu C W and Wang H F 2011 Phys. Rev. Lett. 107 203601
[3] Dogariu A, Sukhov S and Saenz J J 2013 Nat. Photon. 7 24
[4] Gao D L, Novitsky A, Zhang T H, Cheong F C, Gao L, Lim C T, Luk'yanchuk B and Qiu C W 2015 Laser Photon. Rev. 9 75
[5] Zhang L, Qiu X D, Zeng L W and Chen L X 2019 Chin. Phys. B 28 094202
[6] Ling L, Guo H L, Huang L, Qu E, Li Z L and Li Z Y 2012 Chin. Phys. Lett. 29 014214
[7] Guo G T, Feng T H and Xu Y 2018 Opt. Lett. 43 4961
[8] Lee E, Huang D Z and Luo T F 2020 Nat. Commun. 11 2404
[9] Novitsky A and Qiu C W 2014 Phys. Rev. A 90 053815
[10] Ding K, Ng J, Zhou L and Chan C T 2014 Phys. Rev. A 89 063825
[11] Li G P, Wang M Y, Li H L, Yu M X, Dong Y L and Xu J 2016 Opt. Mater. Express 6 388
[12] Wang M Y, Li H L, Gao D L, Gao L, Xu J and Qiu C W 2015 Opt. Express 23 16546
[13] Shalin A S, Sukhov S V, Bogdanov A A, Belov P A and Ginzburg P 2015 Phys. Rev. A 91 063830
[14] Chen H L, Gao L, Zhong C G, Yuan G Q, Huang Y Y, Yu Z W, Cao M and Wang M 2020 AIP Adv. 10 015131
[15] Duan X Y and Wang Z G 2017 Phys. Rev. A 96 053811
[16] Mizrahi A and Fainman Y 2010 Opt. Lett. 35 3405
[17] Chen H J, Ye Q, Zhang Y W, Shi L, Liu S Y, Jian Z and Lin Z F 2017 Phys. Rev. A 96 023809
[18] Song C Z, Yang S Z, Li X M, Li X, Feng J, Pan A L, Wang W L, Xu Z and Bai X D 2019 Chin. Phys. B 28 054204
[19] Wang H C and Li Z P 2019 Acta Phys. Sin. 68 144101 (in Chinese)
[20] Li S, Li H Z, Xu J P, Zhu C J and Yang Y P 2019 Acta Phys. Sin. 68 174202 (in Chinese)
[21] Gu K H, Yan D, Zhang M L, Yin J Z and Fu C B 2019 Acta Phys. Sin. 68 054201 (in Chinese)
[22] Zhang X L, Bao Q Q, Yang M Z and Tian X S 2018 Acta Phys. Sin. 67 104203 (in Chinese)
[23] Gao D L, Shi R, Huang Y and Gao L 2017 Phys. Rev. A 96 043826
[24] Bian X, Gao D L and Gao L 2017 Opt. Express 25 24566
[25] Chen H J, Liu S Y, Zi J and Lin Z F 2015 ACS Nano 9 1926
[26] Craciun M F, Russo S, Yamamoto M and Tarucha S 2011 Nano Today 6 42
[27] Naserpour M, Zapata-Rodriguez C J, Vukovic, S M, Pashaeiadl H and Belic M R 2017 Sci. Rep. 7 12186
[28] Hendry E, Hale P J, Moger J, Savchenko A K and Mikhailov S A 2010 Phys. Rev. Lett. 105 097401
[29] Constant T J, Hornett S M, Chang D E and Hendry E 2016 Nat. Phys. 12 124
[30] Woessner A, Lundeberg M B, Gao Y, Principi A, Alonso-Gonzaolez P, Carrega M, Watanabe K, Taniguchi T, Vignale G, Polini M, Hone J, Hillenbrand R and Koppens F H L 2015 Nat. Mater. 14 421
[31] Brar V W, Jang M S, Sherrott M, Lopez J J and Atwater H A 2013 Nano Lett. 13 2541
[32] Ansell D, Radko I P, Han Z, Rodriguez F J, Bozhevolnyi S I and Grigorenko A N 2015 Nat. Commun. 6 8846
[33] Brar V W, Sherrott M C, Jang M S, Kim S, Kim L, Choi M, Sweatlock L A and Atwater H A 2015 Nat. Commun. 6 7032
[34] Low T and Avouris P 2014 ACS Nano 8 1086
[35] de Abajo F J G 2014 ACS Photon. 1 135
[36] He X Y, Gao P Q and Shi W Z 2016 Nanoscale 8 10388
[37] Jablan M, Soljacic M and Buljan H 2013 Proc. IEEE 101 1689
[38] Rodrigo D, Limaj O, Janner D, Etezadi D, de Abajo F J G, Pruneri V and Altug H 2015 Science 349 165
[39] Xia S X, Zhai X, Huang Y, Liu J Q, Wang L L and Wen S C 2017 Opt. Lett. 42 3052
[40] Chen H L and Huang Y 2020 Phys. Lett. A 384 126733
[41] Noginov M A, Zhu G, Belgrave A M, Bakker R, Shalaev V M, Narimanov E E, Stout S, Herz E, Suteewong T and Wiesner U 2009 Nature 460 1110
[42] Strangi G, De Luca A, Ravaine S, Ferrie M and Bartolino R 2011 Appl. Phys. Lett. 98 251912
[43] Campione S, Albani M and Capolino F 2011 Opt. Mater. Express 1 1077
[44] Fang A A, Huang Z X, Koschny T and Soukoulis C M 2011 Opt. Express 19 12688
[45] Li R J, Wang H P, Zheng B, Dehdashti S, Li E P and Chen H S 2017 Nanoscale 9 8449
[46] Hou X R, Gao D L and Gao L 2019 AIP Adv. 9 035154
[47] Bohren C F and Huffman D R 1983 Absorption and Scattering of Light by Small Particles (New York: John Wiley and Sons) p. 89
[48] Zhang K, Huang Y, Miroshnichenko A E and Gao L 2017 J. Phys. Chem. C 121 11804
[1] Polarization Raman spectra of graphene nanoribbons
Wangwei Xu(许望伟), Shijie Sun(孙诗杰), Muzi Yang(杨慕紫), Zhenliang Hao(郝振亮), Lei Gao(高蕾), Jianchen Lu(卢建臣), Jiasen Zhu(朱嘉森), Jian Chen(陈建), and Jinming Cai(蔡金明). Chin. Phys. B, 2023, 32(4): 046803.
[2] Spin- and valley-polarized Goos-Hänchen-like shift in ferromagnetic mass graphene junction with circularly polarized light
Mei-Rong Liu(刘美荣), Zheng-Fang Liu(刘正方), Ruo-Long Zhang(张若龙), Xian-Bo Xiao(肖贤波), and Qing-Ping Wu(伍清萍). Chin. Phys. B, 2023, 32(3): 037301.
[3] Graphene metasurface-based switchable terahertz half-/quarter-wave plate with a broad bandwidth
Xiaoqing Luo(罗小青), Juan Luo(罗娟), Fangrong Hu(胡放荣), and Guangyuan Li(李光元). Chin. Phys. B, 2023, 32(2): 027801.
[4] Correlated states in alternating twisted bilayer-monolayer-monolayer graphene heterostructure
Ruirui Niu(牛锐锐), Xiangyan Han(韩香岩), Zhuangzhuang Qu(曲壮壮), Zhiyu Wang(王知雨), Zhuoxian Li(李卓贤), Qianling Liu(刘倩伶), Chunrui Han(韩春蕊), and Jianming Lu(路建明). Chin. Phys. B, 2023, 32(1): 017202.
[5] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[6] Optical pulling force on nanoparticle clusters with gain due to Fano-like resonance
Jiangnan Ma(马江南), Feng Lv(冯侣), Guofu Wang(王国富), Zhifang Lin(林志方), Hongxia Zheng(郑红霞), and Huajin Chen(陈华金). Chin. Phys. B, 2023, 32(1): 014205.
[7] Dynamically tunable multiband plasmon-induced transparency effect based on graphene nanoribbon waveguide coupled with rectangle cavities system
Zi-Hao Zhu(朱子豪), Bo-Yun Wang(王波云), Xiang Yan(闫香), Yang Liu(刘洋), Qing-Dong Zeng(曾庆栋), Tao Wang(王涛), and Hua-Qing Yu(余华清). Chin. Phys. B, 2022, 31(8): 084210.
[8] Dual-channel tunable near-infrared absorption enhancement with graphene induced by coupled modes of topological interface states
Zeng-Ping Su(苏增平), Tong-Tong Wei(魏彤彤), and Yue-Ke Wang(王跃科). Chin. Phys. B, 2022, 31(8): 087804.
[9] Recent advances of defect-induced spin and valley polarized states in graphene
Yu Zhang(张钰), Liangguang Jia(贾亮广), Yaoyao Chen(陈瑶瑶), Lin He(何林), and Yeliang Wang(王业亮). Chin. Phys. B, 2022, 31(8): 087301.
[10] Precisely controlling the twist angle of epitaxial MoS2/graphene heterostructure by AFM tip manipulation
Jiahao Yuan(袁嘉浩), Mengzhou Liao(廖梦舟), Zhiheng Huang(黄智恒), Jinpeng Tian(田金朋), Yanbang Chu(褚衍邦), Luojun Du(杜罗军), Wei Yang(杨威), Dongxia Shi(时东霞), Rong Yang(杨蓉), and Guangyu Zhang(张广宇). Chin. Phys. B, 2022, 31(8): 087302.
[11] Longitudinal conductivity in ABC-stacked trilayer graphene under irradiating of linearly polarized light
Guo-Bao Zhu(朱国宝), Hui-Min Yang(杨慧敏), and Jie Yang(杨杰). Chin. Phys. B, 2022, 31(8): 088102.
[12] Valley-dependent transport in strain engineering graphene heterojunctions
Fei Wan(万飞), X R Wang(王新茹), L H Liao(廖烈鸿), J Y Zhang(张嘉颜),M N Chen(陈梦南), G H Zhou(周光辉), Z B Siu(萧卓彬), Mansoor B. A. Jalil, and Yuan Li(李源). Chin. Phys. B, 2022, 31(7): 077302.
[13] Photoelectrochemical activity of ZnO:Ag/rGO photo-anodes synthesized by two-steps sol-gel method
D Ben Jemia, M Karyaoui, M A Wederni, A Bardaoui, M V Martinez-Huerta, M Amlouk, and R Chtourou. Chin. Phys. B, 2022, 31(5): 058201.
[14] Thermionic electron emission in the 1D edge-to-edge limit
Tongyao Zhang(张桐耀), Hanwen Wang(王汉文), Xiuxin Xia(夏秀鑫), Chengbing Qin(秦成兵), and Xiaoxi Li(李小茜). Chin. Phys. B, 2022, 31(5): 058504.
[15] Light-modulated electron retroreflection and Klein tunneling in a graphene-based n-p-n junction
Xingfei Zhou(周兴飞), Ziying Wu(吴子瀛), Yuchen Bai(白宇晨), Qicheng Wang(王起程), Zhentao Zhu(朱震涛), Wei Yan(闫巍), and Yafang Xu(许亚芳). Chin. Phys. B, 2022, 31(4): 047301.
No Suggested Reading articles found!