ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Graphene-tuned threshold gain to achieve optical pulling force on microparticle |
Hong-Li Chen(陈鸿莉)1,† and Yang Huang(黄杨)2 |
1 School of Science, Nantong University, Nantong 226019, China; 2 School of Science, Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology, Jiangnan University, Wuxi 214122, China |
|
|
Abstract We investigate optical force on a graphene-coated gain microparticle by adopting the Maxwell's stress tensor method. It is found that there exists a threshold gain in obtaining the Fano-profile optical force which indicates the reversal of optical pushing and pulling force. And giant pushing/pulling force can be achieved if the gain value of the material is in the proximity of the threshold gain. Our results show that the threshold gain is more sensitive to the relaxation time than to the Fermi energy of the graphene. We further study the optical force on larger microparticle to demonstrate the pulling force occurring at octupole resonance with small gain value and then it will appear at quadrupole resonance by increasing gain value. Our work provides an in-depth insight into the interaction between light and gain material and gives the additional degree of freedom to optical manipulation of microparticle.
|
Received: 11 November 2020
Revised: 06 January 2021
Accepted manuscript online: 08 January 2021
|
PACS:
|
42.50.Wk
|
(Mechanical effects of light on material media, microstructures and particles)
|
|
42.60.Lh
|
(Efficiency, stability, gain, and other operational parameters)
|
|
78.67.Wj
|
(Optical properties of graphene)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11904184, 11847033, and 11704158) and the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20170170). |
Corresponding Authors:
Hong-Li Chen
E-mail: chenhongli@ntu.edu.cn
|
Cite this article:
Hong-Li Chen(陈鸿莉) and Yang Huang(黄杨) Graphene-tuned threshold gain to achieve optical pulling force on microparticle 2021 Chin. Phys. B 30 064205
|
[1] Chen J, Ng J, Lin Z F and Chan C T 2011 Nat. Photon. 5 531 [2] Novitsky A, Qiu C W and Wang H F 2011 Phys. Rev. Lett. 107 203601 [3] Dogariu A, Sukhov S and Saenz J J 2013 Nat. Photon. 7 24 [4] Gao D L, Novitsky A, Zhang T H, Cheong F C, Gao L, Lim C T, Luk'yanchuk B and Qiu C W 2015 Laser Photon. Rev. 9 75 [5] Zhang L, Qiu X D, Zeng L W and Chen L X 2019 Chin. Phys. B 28 094202 [6] Ling L, Guo H L, Huang L, Qu E, Li Z L and Li Z Y 2012 Chin. Phys. Lett. 29 014214 [7] Guo G T, Feng T H and Xu Y 2018 Opt. Lett. 43 4961 [8] Lee E, Huang D Z and Luo T F 2020 Nat. Commun. 11 2404 [9] Novitsky A and Qiu C W 2014 Phys. Rev. A 90 053815 [10] Ding K, Ng J, Zhou L and Chan C T 2014 Phys. Rev. A 89 063825 [11] Li G P, Wang M Y, Li H L, Yu M X, Dong Y L and Xu J 2016 Opt. Mater. Express 6 388 [12] Wang M Y, Li H L, Gao D L, Gao L, Xu J and Qiu C W 2015 Opt. Express 23 16546 [13] Shalin A S, Sukhov S V, Bogdanov A A, Belov P A and Ginzburg P 2015 Phys. Rev. A 91 063830 [14] Chen H L, Gao L, Zhong C G, Yuan G Q, Huang Y Y, Yu Z W, Cao M and Wang M 2020 AIP Adv. 10 015131 [15] Duan X Y and Wang Z G 2017 Phys. Rev. A 96 053811 [16] Mizrahi A and Fainman Y 2010 Opt. Lett. 35 3405 [17] Chen H J, Ye Q, Zhang Y W, Shi L, Liu S Y, Jian Z and Lin Z F 2017 Phys. Rev. A 96 023809 [18] Song C Z, Yang S Z, Li X M, Li X, Feng J, Pan A L, Wang W L, Xu Z and Bai X D 2019 Chin. Phys. B 28 054204 [19] Wang H C and Li Z P 2019 Acta Phys. Sin. 68 144101 (in Chinese) [20] Li S, Li H Z, Xu J P, Zhu C J and Yang Y P 2019 Acta Phys. Sin. 68 174202 (in Chinese) [21] Gu K H, Yan D, Zhang M L, Yin J Z and Fu C B 2019 Acta Phys. Sin. 68 054201 (in Chinese) [22] Zhang X L, Bao Q Q, Yang M Z and Tian X S 2018 Acta Phys. Sin. 67 104203 (in Chinese) [23] Gao D L, Shi R, Huang Y and Gao L 2017 Phys. Rev. A 96 043826 [24] Bian X, Gao D L and Gao L 2017 Opt. Express 25 24566 [25] Chen H J, Liu S Y, Zi J and Lin Z F 2015 ACS Nano 9 1926 [26] Craciun M F, Russo S, Yamamoto M and Tarucha S 2011 Nano Today 6 42 [27] Naserpour M, Zapata-Rodriguez C J, Vukovic, S M, Pashaeiadl H and Belic M R 2017 Sci. Rep. 7 12186 [28] Hendry E, Hale P J, Moger J, Savchenko A K and Mikhailov S A 2010 Phys. Rev. Lett. 105 097401 [29] Constant T J, Hornett S M, Chang D E and Hendry E 2016 Nat. Phys. 12 124 [30] Woessner A, Lundeberg M B, Gao Y, Principi A, Alonso-Gonzaolez P, Carrega M, Watanabe K, Taniguchi T, Vignale G, Polini M, Hone J, Hillenbrand R and Koppens F H L 2015 Nat. Mater. 14 421 [31] Brar V W, Jang M S, Sherrott M, Lopez J J and Atwater H A 2013 Nano Lett. 13 2541 [32] Ansell D, Radko I P, Han Z, Rodriguez F J, Bozhevolnyi S I and Grigorenko A N 2015 Nat. Commun. 6 8846 [33] Brar V W, Sherrott M C, Jang M S, Kim S, Kim L, Choi M, Sweatlock L A and Atwater H A 2015 Nat. Commun. 6 7032 [34] Low T and Avouris P 2014 ACS Nano 8 1086 [35] de Abajo F J G 2014 ACS Photon. 1 135 [36] He X Y, Gao P Q and Shi W Z 2016 Nanoscale 8 10388 [37] Jablan M, Soljacic M and Buljan H 2013 Proc. IEEE 101 1689 [38] Rodrigo D, Limaj O, Janner D, Etezadi D, de Abajo F J G, Pruneri V and Altug H 2015 Science 349 165 [39] Xia S X, Zhai X, Huang Y, Liu J Q, Wang L L and Wen S C 2017 Opt. Lett. 42 3052 [40] Chen H L and Huang Y 2020 Phys. Lett. A 384 126733 [41] Noginov M A, Zhu G, Belgrave A M, Bakker R, Shalaev V M, Narimanov E E, Stout S, Herz E, Suteewong T and Wiesner U 2009 Nature 460 1110 [42] Strangi G, De Luca A, Ravaine S, Ferrie M and Bartolino R 2011 Appl. Phys. Lett. 98 251912 [43] Campione S, Albani M and Capolino F 2011 Opt. Mater. Express 1 1077 [44] Fang A A, Huang Z X, Koschny T and Soukoulis C M 2011 Opt. Express 19 12688 [45] Li R J, Wang H P, Zheng B, Dehdashti S, Li E P and Chen H S 2017 Nanoscale 9 8449 [46] Hou X R, Gao D L and Gao L 2019 AIP Adv. 9 035154 [47] Bohren C F and Huffman D R 1983 Absorption and Scattering of Light by Small Particles (New York: John Wiley and Sons) p. 89 [48] Zhang K, Huang Y, Miroshnichenko A E and Gao L 2017 J. Phys. Chem. C 121 11804 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|