Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(12): 127303    DOI: 10.1088/1674-1056/ac2e5d
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Controllable and switchable chiral near-fields in symmetric graphene metasurfaces

Li Hu(胡莉)1,2,†, Hongxia Dai(代洪霞)1,2, Fayin Cheng(程发银)1,2, and Yuxia Tang(唐裕霞)1,3
1 Chongqing Key Laboratory of Intelligent Perception and BlockChain Technology, Chongqing Technology and Business University, Chongqing 400067, China;
2 Department of Applied Physics, School of Computer Science and Information Engineering, Chongqing Technology and Business University, Chongqing 400067, China;
3 Soft Matter and Interdisciplinary Research Center, College of Physics, Chongqing University, Chongqing 400044, China
Abstract  A strong chiral near-field plays significant roles in the detection, separation and sensing of chiral molecules. In this paper, a simple and symmetric metasurface is proposed to generate strong chiral near-fields with both circularly polarized light and linearly polarized light illuminations in the mid-infrared region. Owing to the near-field interaction between plasmonic resonant modes of two nanosheets excited by circularly polarized light, there is a strong single-handed chiral near-field in the gap between the two graphene nanosheets and the maximum enhancement of the optical chirality could reach two orders of magnitude. As expected, the intensity and the response wavelength of the chiral near-fields could be controlled by the Fermi level and geometrical parameters of the graphene nanosheets, as well as the permittivity of the substrate. Meanwhile, based on the interaction between the incident field and scattered field, the one-handed chiral near-field in the gap also could be generated by the linearly polarized light excitation. For the two cases, the handedness of the chiral near-field could be switched by the polarized direction of the incident light. These results have potential opportunities for applications in molecular detection and sensing.
Keywords:  plasmonic resonance      chiral near-field      graphene      metasurface  
Received:  21 August 2021      Revised:  27 September 2021      Accepted manuscript online:  11 October 2021
PACS:  73.20.Mf (Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))  
  25.70.Ef (Resonances)  
  78.67.Wj (Optical properties of graphene)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11804035) and Science and Technology Research Program of Chongqing Municipal Education Commission, China (Grant No. KJ1706153).
Corresponding Authors:  Li Hu     E-mail:  huli@ctbu.edu.cn

Cite this article: 

Li Hu(胡莉), Hongxia Dai(代洪霞), Fayin Cheng(程发银), and Yuxia Tang(唐裕霞) Controllable and switchable chiral near-fields in symmetric graphene metasurfaces 2021 Chin. Phys. B 30 127303

[1] Cecconello A, Besteiro L V, Govorov A O and Willner I 2017 Nat. Rev. Mater. 2 17039
[2] Luo Y, Chi C, Jiang M, Li R, Zu S, Li Y and Fang Z 2017 Adv. Opt. Mater. 5 1700040
[3] Hao C, Xu L, Kuang H and Xu C 2020 Adv. Mater. 32 1802075
[4] Matuschek M, Singh D P, Jeong H H, Nesterov M, Weiss T, Fischer P, Neubrech F and Liu N 2018 Small 14 1702990
[5] Collins J T, Kuppe C, Hooper D C, Sibilia C, Centini M and Valev V K 2017 Adv. Opt. Mater. 5 1700182
[6] Wang X and Tang Z 2017 Small 13 1601115
[7] Ben-Moshe A, Maoz B M, Govorov A O and Markovich G 2013 Chem. Soc. Rev. 42 7028
[8] Chen Y, Cheng Y and Sun M 2021 J. Phys. Chem. C 125 21301
[9] Mu X, Hu L, Cheng Y, Fang Y and Sun M 2021 Nanoscale 13 581
[10] Cui L, R Li, Mu T, Wang J, Zhang W and Sun M 2021 Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy 264 120283
[11] Kong X T, Khosravi Khorashad L, Wang Z and Govorov A O 2018 Nano Lett. 18 2001
[12] Kuzyk A, Schreiber R, Fan Z, Pardatscher G, Roller E M, Hogele A, Simmel F C, Govorov A O and Liedl T 2012 Nature 483 311
[13] Fan Z and Govorov A O 2010 Nano Lett. 10 2580
[14] Kang L, Ren Q and Werner D H 2017 ACS Photon. 4 1298
[15] Hendry E, Carpy T, Johnston J, Popland M, Mikhaylovskiy R V, Lapthorn A J, Kelly S M, Barron L D, Gadegaard N and Kadodwala M 2010 Nat. Nanotechnol. 5 783
[16] Meinzer N, Hendry E and Barnes W L 2013 Phys. Rev. B 88 041407
[17] Shi Y, Zhu T, Zhang T, Mazzulla A, Tsai D P, Ding W, Liu A Q, Cipparrone G, Saenz J J and Qiu C W 2020 Light Sci. Appl. 9 62
[18] Lee Y Y, Kim R M, Im S W, Balamurugan M and Nam K T 2020 Nanoscale 12 58
[19] Tian X, Fang Y and Sun M 2015 Sci. Rep. 5 17534
[20] Davis T J and Hendry E 2013 Phys. Rev. B 87 085405
[21] Hu L, Dai H, Xi F and Long T 2018 Euro. Phys. J. D 72 201
[22] Schäferling M, Engheta N, Giessen H and Weiss T 2016 ACS Photon. 3 1076
[23] Schäferling M, Dregely D, Hentschel M and Giessen H 2012 Phys. Rev. X 2 031010
[24] Huang Y, Yao Z, Hu F, Liu C, Yu L, Jin Y and Xu X 2017 Carbon 119 305
[25] Fu T, Chen Y, Wang T, Li H, Zhang Z and Wang L 2017 Opt. Express 25 24623
[26] Kong X T, Zhao R, Wang Z and Govorov A O 2017 Nano Lett. 17 5099
[27] Xiao S, Wang T, Liu T, Zhou C, Jiang X and Zhang J 2020 J. Phys. D:Appl. Phys. 53 503002[28] Cui L and Sun M 2021 J. Phys. Chem. C 125 22370
[29] Mu X and Sun M 2020 Materials Today Physics 14 100222
[30] Cui L, Wang J and Sun M 2021 Reviews in Physics 6 100054
[31] Stauber T, Low T and Gomez-Santos G 2018 Phys. Rev. Lett. 120 046801
[32] Shi C, He X, Peng J, Xiao G, Liu F, Lin F and Zhang H 2019 Optics and Laser Technology 114 28
[33] Ye L, Zeng F, Zhang Y and Liu Q H 2019 Carbon 148 317
[34] Zhou S, Lai P, Dong G, Li P, Li Y, Zhu Z, Guan C and Shi J 2019 Opt. Express 27 15359
[35] Hu L, Cheng F, Tang Y and Wang H 2021 Euro. Phys. J. B 94 8
[36] Wang Y, Wang Z, Wang Q, Zhou S, Han Q, Gao W, Ren K, Qi J and J Dong 2019 J. Phys. Chem. C 123 24754
[37] Stauber T, Low T and Gomez-Santos G 2020 Nano Lett. 20 8711
[38] Tang Y and Cohen A E 2010 Phys. Rev. Lett. 104 163901
[39] Horrer A, Zhang Y, Gerard D, Beal J, Kociak Plain M J and Bachelot R 2020 Nano Lett. 20 509
[40] Hu L, Xi F, Qv L and Fang Y 2018 ACS Omega 3 1170
[41] Schäferling M, Yin X and Giessen H 2012 Opt. Expres 20 26326
[1] Polarization Raman spectra of graphene nanoribbons
Wangwei Xu(许望伟), Shijie Sun(孙诗杰), Muzi Yang(杨慕紫), Zhenliang Hao(郝振亮), Lei Gao(高蕾), Jianchen Lu(卢建臣), Jiasen Zhu(朱嘉森), Jian Chen(陈建), and Jinming Cai(蔡金明). Chin. Phys. B, 2023, 32(4): 046803.
[2] Spin- and valley-polarized Goos-Hänchen-like shift in ferromagnetic mass graphene junction with circularly polarized light
Mei-Rong Liu(刘美荣), Zheng-Fang Liu(刘正方), Ruo-Long Zhang(张若龙), Xian-Bo Xiao(肖贤波), and Qing-Ping Wu(伍清萍). Chin. Phys. B, 2023, 32(3): 037301.
[3] Reconfigurable source illusion device for airborne sound using an enclosed adjustable piezoelectric metasurface
Yi-Fan Tang(唐一璠) and Shu-Yu Lin(林书玉). Chin. Phys. B, 2023, 32(3): 034306.
[4] Generation of elliptical airy vortex beams based on all-dielectric metasurface
Xiao-Ju Xue(薛晓菊), Bi-Jun Xu(徐弼军), Bai-Rui Wu(吴白瑞), Xiao-Gang Wang(汪小刚), Xin-Ning Yu(俞昕宁), Lu Lin(林露), and Hong-Qiang Li(李宏强). Chin. Phys. B, 2023, 32(2): 024215.
[5] Graphene metasurface-based switchable terahertz half-/quarter-wave plate with a broad bandwidth
Xiaoqing Luo(罗小青), Juan Luo(罗娟), Fangrong Hu(胡放荣), and Guangyuan Li(李光元). Chin. Phys. B, 2023, 32(2): 027801.
[6] High efficiency of broadband transmissive metasurface terahertz polarization converter
Qiangguo Zhou(周强国), Yang Li(李洋), Yongzhen Li(李永振), Niangjuan Yao(姚娘娟), and Zhiming Huang(黄志明). Chin. Phys. B, 2023, 32(2): 024201.
[7] High gain and circularly polarized substrate integrated waveguide cavity antenna array based on metasurface
Hao Bai(白昊), Guang-Ming Wang(王光明), and Xiao-Jun Zou(邹晓鋆). Chin. Phys. B, 2023, 32(1): 014101.
[8] Correlated states in alternating twisted bilayer-monolayer-monolayer graphene heterostructure
Ruirui Niu(牛锐锐), Xiangyan Han(韩香岩), Zhuangzhuang Qu(曲壮壮), Zhiyu Wang(王知雨), Zhuoxian Li(李卓贤), Qianling Liu(刘倩伶), Chunrui Han(韩春蕊), and Jianming Lu(路建明). Chin. Phys. B, 2023, 32(1): 017202.
[9] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[10] Dual-function terahertz metasurface based on vanadium dioxide and graphene
Jiu-Sheng Li(李九生) and Zhe-Wen Li(黎哲文). Chin. Phys. B, 2022, 31(9): 094201.
[11] Real-time programmable coding metasurface antenna for multibeam switching and scanning
Jia-Yu Yu(余佳宇), Qiu-Rong Zheng(郑秋容), Bin Zhang(张斌), Jie He(贺杰), Xiang-Ming Hu(胡湘明), and Jie Liu(刘杰). Chin. Phys. B, 2022, 31(9): 090704.
[12] Transmissive 2-bit anisotropic coding metasurface
Pengtao Lai(来鹏涛), Zenglin Li(李增霖), Wei Wang(王炜), Jia Qu(曲嘉), Liangwei Wu(吴良威),Tingting Lv(吕婷婷), Bo Lv(吕博), Zheng Zhu(朱正), Yuxiang Li(李玉祥),Chunying Guan(关春颖), Huifeng Ma(马慧锋), and Jinhui Shi(史金辉). Chin. Phys. B, 2022, 31(9): 098102.
[13] Controlling acoustic orbital angular momentum with artificial structures: From physics to application
Wei Wang(王未), Jingjing Liu(刘京京), Bin Liang (梁彬), and Jianchun Cheng(程建春). Chin. Phys. B, 2022, 31(9): 094302.
[14] Dynamically tunable multiband plasmon-induced transparency effect based on graphene nanoribbon waveguide coupled with rectangle cavities system
Zi-Hao Zhu(朱子豪), Bo-Yun Wang(王波云), Xiang Yan(闫香), Yang Liu(刘洋), Qing-Dong Zeng(曾庆栋), Tao Wang(王涛), and Hua-Qing Yu(余华清). Chin. Phys. B, 2022, 31(8): 084210.
[15] Precisely controlling the twist angle of epitaxial MoS2/graphene heterostructure by AFM tip manipulation
Jiahao Yuan(袁嘉浩), Mengzhou Liao(廖梦舟), Zhiheng Huang(黄智恒), Jinpeng Tian(田金朋), Yanbang Chu(褚衍邦), Luojun Du(杜罗军), Wei Yang(杨威), Dongxia Shi(时东霞), Rong Yang(杨蓉), and Guangyu Zhang(张广宇). Chin. Phys. B, 2022, 31(8): 087302.
No Suggested Reading articles found!