1 Research Institute of Superconductor Electronics, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China; 2 Purple Mountain Laboratories, Nanjing 211111, China
Abstract An impedance matched parametric amplifier (IMPA) with Josephson junctions is fabricated and characterized. A hybrid structure containing coplanar and strip structures is implemented to realize an impedance taper line and a plate capacitor in an LC nonlinear resonator based on Josephson junctions. The upper plate of the capacitor is isolated with SiNx without grounding as well as the strips. Such easily-prepared designs greatly reduce the requirements for lithography alignment and precision, which makes the fabrication process more reliable. The experimental results show that in such IMPA a gain higher than 25 dB with a bandwidth of about 100 MHz can be obtained. This broadband amplifier operates close to the quantum limit. By adjusting the working point, a higher bandwidth of about 400 MHz can be obtained with a gain of about 17 dB.
(Nonlinear phenomena: waves, wave propagation, and other interactions (including parametric effects, mode coupling, ponderomotive effects, etc.))
Fund: Project partially supported by the National Key R&D Program of of China (Grant No. 2016YFA0301801), the National Natural Science Foundation of China (Grant Nos. 61521001 and 61571219), and PAPD, Dengfeng Project B of Nanjing University.
[1] Caves C M 1982 Phys. Rev. D 26 1817 [2] Clerk A A, Devoret M H, Girvin S M, Marquardt F and Schoelkopf R J 2010 Rev. Mod. Phys. 82 1155 [3] Roy A and Devoret M 2016 C.R. Phys. 17 740 [4] Castellanos-Beltran M A, Irwin K D, and Hilton G C, and Vale L R and Lehnert K W 2008 Nat. Phys. 4 929 [5] Devoret M H and Schoelkopf R J 2013 Science 339 6124 [6] Wustmann W and Shumeiko V 2013 Phys. Rev. B 87 184501 [7] Yurke B and Buks E 2006 J. Lightwave Technol. 24 5054 [8] Yamamoto T, Inomata K, Watanabe M, Matsuba K, Miyazaki T, Oliver W D, Nakamura Y and Tsai J S 2008 Appl.Phys. Lett. 93 042510 [9] Zhou X, Schmitt V, Bertet P, Vion D, Wustmann W, Shumeiko V and Esteve D 2014 Phys. Rev. B 89 214517 [10] Castellanos-Beltran M A and Lehnert K W 2007 Appl. Phys. Lett. 91 083509 [11] Lu Y P, Pan J Z, Wei X Y, Jiang J L, Lu S, Li Z S, Tu X C, Kang L, Cao C H, Wang H B, Chen J, Xu W W, Sun G Z and Wu P H 2020 AIP Advances 10 025135 [12] Mutus J Y, White T C, Jeffrey E, Sank D, Barends R, Bochmann J, Chen Y, Chen Z, Chiaro B, Dunsworth A, Kelly J, Megrant A, Neill C, O’Malley P J J, Roushan P, Vainsencher A, Wenner J, Siddiqi I, Vijay R, Cleland A N and Martinis J M 2013 Appl. Phys. Lett. 103 122602 [13] Hatridge M, Vijay R, Slichter D,Clarke J and Siddiqi I 2011 Phys. Rev. B 83 134501 [14] Lecocq F, Ranzani L, and Peterson G, Cicak K, Simmonds R W, Teufel J D and Aumentado J 2014 Phys. Rev. Applied 7 024028 [15] Laflamme C and Clerk A A 2011 Phys. Rev. A 83 033803 [16] Narla A, Sliwa K M, Hatridge M, Shankar S, Frunzio L, Schoelkopf R J and Devoret M H 2014 Appl. Phys. Lett. 104 232605 [17] Kono S, Koshino K, Tabuchi Y, Noguchi A and Nakamura Y 2018 Nat. Phys. 14 546 [18] Lin Z R, Inomata K, Oliver W D, Koshino K, Nakamura Y, Tsai J S and Yamamoto T 2014 Appl. Phys. Lett. 103 132602 [19] Jeremy B C, Florent L, Raymond W S, José A and John D T 2016 Nat. Phys. 12 683 [20] Mutus J Y, White T C, Barends R, Chen Y, Chen Z, Chiaro B, Dunsworth A, Jeffrey E, Kelly J, Megrant A, Neill C, O’Malley P, Roushan P, Sank D, Vainsencher A, Wenner J, Sundqvist K M, Cleland A N and Martinis J M 2014 Appl. Phys. Lett. 104 263513 [21] Roy T, Kundu S, Chand M, Vadiraj A M, Ranadive A, Patankar, Meghan P, Aumentado J, Clerk A A and Vijay R 2015 Appl. Phys. Lett. 107 262601 [22] Huang K Q, Guo Q J, Song C, Zheng Y R, Deng H, Wu Y L, Jin Y R, Zhu X B and Zheng D N 2017 Chin. Phys. B 26 094203 [23] Yang R and Deng H 2020 IEEE Trans. Appl. Supercond. 30 1100306 [24] Su F F, Wang Z T, Xu H K, Zhao S K, Yan H S, Yang Z H, Tian Ye and Zhao S P 2019 Chin. Phys. B 28 110303 [25] Elo T, Abhilash T S, Perelshtein M R, Lilja I, Korostylev E V and Hakonen P J 2019 Appl. Phys. Lett. 114 152601 [26] Udson C M, Sébastien J, Philippe J, Bertrand R, Alexandre B, Fabien P, Christophe M and Carles A 2019 Phys. Rev. Applied 11 034035 [27] Bosman S J, Singh V, Bruno A and Steele G A 2015 Appl. Phys. Lett. 107 192602 [28] Dolan G J 1977 Appl. Phys. Lett. 31 337
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.