Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(6): 064206    DOI: 10.1088/1674-1056/abddab

Multiple scattering and modeling of laser in fog

Ji-Yu Xue(薛积禹)1, Yun-Hua Cao(曹运华)1,†, Zhen-Sen Wu(吴振森)1, Jie Chen(陈杰)1, Yan-Hui Li(李艳辉)1, Geng Zhang(张耿)1, Kai Yang(杨凯)1, and Ruo-Ting Gao(高若婷)2
1 School of Physics and Optoelectronic Engineering, Xidian University, Xi'an 710071, China;
2 School of Environment and Safety Engineering, North University of China, Taiyuan 030000, China
Abstract  When a laser is transmitted in fog, and the water droplets will scatter and absorb the laser, which affects the intensity of the laser transmission and the accuracy of radar detection. Therefore, it is of great significance to study the laser transmission in the fog. At present, the main method of calculating the scattering and attenuation characteristics of fog is based on the radiation transmission theory, which is realized by a large number of numerical calculations or physical simulation methods, which takes time and cannot meet the requirements for obtaining the fast and accurate results. Therefore, in this paper established are a new laser forward attenuation model and backward attenuation model in low visibility fog. It is found that in low visibility environments, the results calculated by the Monte Carlo method are more accurate than those from most of the existing forward attenuation models. For the cases of 0.86-μm, 1.06-μm, 1.315-μm, 10.6-μm typical lasers incident on different fogs with different visibilities, a backscatter model is established, the error between the fitting result and the calculation result is analyzed, the backward attenuation fitting parameters of the new model are tested, and a more accurate fitting result is obtained.
Keywords:  Mie theory      Monte Carlo method      engineering model      multiple scattering      error analysis  
Received:  10 December 2020      Revised:  13 January 2021      Accepted manuscript online:  20 January 2021
PACS:  42.55.-f (Lasers)  
  42.62.-b (Laser applications)  
  42.68.Jg (Effects of aerosols?)  
  42.68.Ay (Propagation, transmission, attenuation, and radiative transfer)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61571355 and 61401342).
Corresponding Authors:  Yun-Hua Cao     E-mail:

Cite this article: 

Ji-Yu Xue(薛积禹), Yun-Hua Cao(曹运华), Zhen-Sen Wu(吴振森), Jie Chen(陈杰), Yan-Hui Li(李艳辉), Geng Zhang(张耿), Kai Yang(杨凯), and Ruo-Ting Gao(高若婷) Multiple scattering and modeling of laser in fog 2021 Chin. Phys. B 30 064206

[1] Zhao W J 2014 Study on Laser Attenuation Character in Atmospheric Aerosol, Ph. D. Dissertation (Xi'an: Xidian University) (in Chinese)
[2] Yang R K, Ma C L, Han X E, Su Z L and Jian D J 2007 Infrared and Laser Engineering 36 415
[3] Wang Y M and Gao G Q 2014 Optoelectron. Technol. Appl. 29 4
[4] Li S J, Liu Y B, Li D X and Liu L 2010 Ship Electronic Warfare 33 22
[5] Wu Z S and Wu T 2017 National Annual Conference on Radio Transmission, September 16-19, 2015, Beijing, China, p. 129
[6] Zhang M, Lin L, Li S X and Wu X 2019 Optik 178 1313
[7] Zhong H C, Zhou J, Du Z X and Li X 2018 Journal of Aerosol Science 121 21
[8] Li D X, Yang R J, Sun H X and Li S J 2012 Journal of Dalian Maritime University 38 94
[9] Zhao X L, Li D X and Liu C J 2011 Foreign Electronic Measurement Technology 30 25
[10] Shah S, Mughal S and Memon S 2015 IEEE International Conference on Emerging Technologies (ICET), December 19-20, 2015, Peshawar, Pakistan, pp. 1-4
[11] Li Z H 2001 Meteorological Journal 5 616
[12] Geints Y E, Zemlyanov A A, Krekov G M and Matvienko G G 2010 Atmospheric and Oceanic Optics 23 469
[13] Toublanc D 1996 Appl. Opt. 35 3270
[14] Wu Z S, Yan Y and Chen L H 1992 International Journal of Infrared Millimeter Waves 13 981
[15] Hulst H C and Roberge W G 1985 Space Sci. Rev. 41 204
[16] Maienthal R B M 1962 American Scientist 50 452
[17] Kim I I, McArthur B and Korevaar E 2001 IEEE Proc. 4214 26
[18] De Boer J F, Milner T E and Nelson J S 1999 Opt. Lett. 24 300
[19] Vasseur H and Gibbins C J 1996 Radio 31 1089
[20] Zhao Z W, Wu Z S, Shen G D and Lin L K 2002 Journal of Infrared and Millimeter Waves 21 95
[1] Solving quantum rotor model with different Monte Carlo techniques
Weilun Jiang(姜伟伦), Gaopei Pan(潘高培), Yuzhi Liu(刘毓智), and Zi-Yang Meng(孟子杨). Chin. Phys. B, 2022, 31(4): 040504.
[2] Sensitivity of heavy-ion-induced single event burnout in SiC MOSFET
Hong Zhang(张鸿), Hong-Xia Guo(郭红霞), Feng-Qi Zhang(张凤祁), Xiao-Yu Pan(潘霄宇), Yi-Tian Liu(柳奕天), Zhao-Qiao Gu(顾朝桥), An-An Ju(琚安安), and Xiao-Ping Ouyang(欧阳晓平). Chin. Phys. B, 2022, 31(1): 018501.
[3] Effective model for rare-earth Kitaev materials and its classical Monte Carlo simulation
Mengjie Sun(孙梦杰), Huihang Lin(林慧航), Zheng Zhang(张政), Yanzhen Cai(蔡焱桢), Wei Ren(任玮), Jing Kang(康靖), Jianting Ji(籍建葶), Feng Jin(金峰), Xiaoqun Wang(王孝群), Rong Yu(俞榕), Qingming Zhang(张清明), and Zhengxin Liu(刘正鑫). Chin. Phys. B, 2021, 30(8): 087503.
[4] Radiation force and torque on a two-dimensional circular cross-section of a non-viscous eccentric layered compressible cylinder in acoustical standing waves
F G Mitri. Chin. Phys. B, 2021, 30(2): 024302.
[5] Selective excitation of multipolar surface plasmon in a graphene-coated dielectric particle by Laguerre Gaussian beam
Yang Yang(杨阳), Guanghua Zhang(张光华), Xiaoyu Dai(戴小玉). Chin. Phys. B, 2020, 29(5): 057302.
[6] Electromagnetic scattering of charged particles in a strong wind-blown sand electric field
Xingcai Li(李兴财), Xuan Gao(高璇), Juan Wang(王娟). Chin. Phys. B, 2019, 28(3): 034208.
[7] Rapid measurement of transmission matrix with the sequential semi-definite programming method
Zhenfeng Zhang(张振峰), Bin Zhang(张彬), Qi Feng(冯祺), Huimei He(何惠梅), Yingchun Ding(丁迎春). Chin. Phys. B, 2018, 27(8): 084201.
[8] Frequency response range of terahertz pulse coherent detection based on THz-induced time-resolved luminescence quenching
Man Zhang(张曼), Zhen-Gang Yang(杨振刚), Jin-Song Liu(刘劲松), Ke-Jia Wang(王可嘉), Jiao-Li Gong(龚姣丽), Sheng-Lie Wang(汪盛烈). Chin. Phys. B, 2018, 27(6): 060204.
[9] Comment on “Band gaps structure and semi-Dirac point of two-dimensional function photonic crystals” by Si-Qi Zhang et al.
Hai-Feng Zhang(章海锋). Chin. Phys. B, 2018, 27(1): 014205.
[10] Quantum Monte Carlo study of hard-core bosons in Creutz ladder with zero flux
Yang Lin(林洋), Weichang Hao(郝维昌), Huaiming Guo(郭怀明). Chin. Phys. B, 2018, 27(1): 010204.
[11] Super scattering phenomenon in active spherical nanoparticles
Chang-Yu Liu(刘昌宇), Ya-Ming Xie(解亚明), Zhi-Guo Wang(王治国). Chin. Phys. B, 2017, 26(6): 067803.
[12] Effective dielectric constant model of electromagnetic backscattering from stratified air-sea surface film-sea water medium
Tao Xie(谢涛), William Perrie, He Fang(方贺), Li Zhao(赵立), Wen-Jin Yu(于文金), Yi-Jun He(何宜军). Chin. Phys. B, 2017, 26(5): 054102.
[13] Random lasing in dye-doped polymer dispersed liquid crystal film
Rina Wu(乌日娜), Rui-xin Shi(史瑞新), Xiaojiao Wu(邬小娇), Jie Wu(吴杰), Qin Dai(岱钦). Chin. Phys. B, 2016, 25(9): 094209.
[14] Mobility of large clusters on a semiconductor surface: Kinetic Monte Carlo simulation results
M Esen, A T Tüzemen, M Ozdemir. Chin. Phys. B, 2016, 25(1): 013601.
[15] Magnetization plateaus and frequency dispersion of hysteresis on frustrated dipolar array
Zhang You-Tian (张又天). Chin. Phys. B, 2015, 24(8): 087502.
No Suggested Reading articles found!