Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(12): 124203    DOI: 10.1088/1674-1056/abf7ab

Brillouin gain spectrum characterization in Ge-doped large-mode-area fibers

Xia-Xia Niu(牛夏夏)1,2, Yi-Feng Yang(杨依枫)1,†, Zhao Quan(全昭)1, Chun-Lei Yu(于春雷)1, Qin-Ling Zhou(周秦岭)1, Hui Shen(沈辉)1, Bing He(何兵)1,‡, and Jun Zhou(周军)1
1 Shanghai Key Laboratory of All Solid-State Laser and Applied Techniques, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China;
2 Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
Abstract  The dependence of Brillouin gain spectrum (BGS) characteristics, including the Brillouin frequency shift (BFS) and the BGS bandwidth, on germanium concentration in large-mode-area Ge-doped passive fibers is investigated theoretically and experimentally. The simulation results show that the BFS is inversely proportional to GeO2 concentration, and the BGS bandwidth initially increases with the augment of GeO2 concentration, and then decreases. The BGSs of four fibers with core diameters of 10 μm and 20 μm for different GeO2 concentrations are compared experimentally. Experimental results demonstrate that with the same core diameter, the variations of BFS and BGS bandwidths with GeO2 concentration accord with the simulation results. Additionally, the BGS characteristics of three large-mode-area passive fibers with diameters of 10 μm, 25 μm, and 30 μm are measured, which confirm that the increasing of the fiber diameters will cause the BGS bandwidth to broaden. We believe that these results can provide valuable references for modulating the high-power narrow-linewidth fiber lasers and Brillouin fiber amplifiers.
Keywords:  stimulated Brillouin scattering      Brillouin gain spectrum      large-mode-area fibers      fiber laser  
Received:  24 February 2021      Revised:  12 April 2021      Accepted manuscript online:  14 April 2021
PACS:  42.55.Wd (Fiber lasers)  
  42.65.Es (Stimulated Brillouin and Rayleigh scattering)  
  42.65.-k (Nonlinear optics)  
Fund: Project supported by the Key-Area Research and Development Program of Guangdong Province, China (Grant No. 2018B090904001), the National Natural Science Foundation of China (Grant Nos. 61805261, 61405202, and 61705243), and the Youth Innovation Promotion Association, Chinese Academy of Sciences (Grant No. 2020252).
Corresponding Authors:  Yi-Feng Yang, Yi-Feng Yang     E-mail:;

Cite this article: 

Xia-Xia Niu(牛夏夏), Yi-Feng Yang(杨依枫), Zhao Quan(全昭), Chun-Lei Yu(于春雷), Qin-Ling Zhou(周秦岭), Hui Shen(沈辉), Bing He(何兵), and Jun Zhou(周军) Brillouin gain spectrum characterization in Ge-doped large-mode-area fibers 2021 Chin. Phys. B 30 124203

[1] Liu A, Mead R, Vatter T, Henderson A and Stafford R 2004 Proc. SPIE 5335 81
[2] Liu Z J, Zhou P, Wang X J, Wang X L and Ma Y X 2013 Sci. China 56 1597
[3] Richardson D J, Nilsson J and Clarkson W A 2010 J. Opt. Soc. Am. B 27 B63
[4] Kobyakov A, Sauer M and Chowdhury D 2009 Adv. Opt. Photon. 2 1
[5] Feng Q S, Cao L H, Liu Z J, Zheng C Y and He X T 2019 High. Power. Laser. Sci. Eng. 7 04000
[6] Zhao X, Yang Y F, Shen H, Chen X L, Bai G, Zhang J P, Qi Y F, He B and Zhou J 2017 High. Power Laser. Sci. Eng. 5 E31
[7] Robin C and Dajani I 2011 Opt. Lett. 36 2641
[8] Zhang Z Z, Guo C, Cui L, Zhang Y C, Du C and Li X Y 2019 Chin. Opt. Lett. 17 118
[9] Li M J, Chen X, Wang J, Gray S, Liu A, Demeritt J A, Ruffin A B, Crowley A M, Walton D T and Zenteno L A 2007 Opt. Express 15 8290
[10] Lim K J, Seah S K W, Ye J Y E, Lim W W Y, Seah C P, Tan Y B, Tan S T, Lim H T, Sidharthan R, Prasadh A R, Chang C J, Yoo S and Chua S L 2020 Photon. Res. 8 82
[11] Leigh M, Shi W, Zong J, Yao Z, Jiang S and Peyghambarian N 2008 Appl. Phys. Lett. 92 1326
[12] Anderson B, Flores A, Holten R and Dajani I 2015 Opt. Express 23 27046
[13] Supradeepa V R 2013 Opt. Express 21 4677
[14] Zeringue C, Dajani I, Naderi S, Moore G T and Robin C 2012 Opt. Express 20 21196
[15] Shen H, Lou Q H, Quan Z, Li X W, Yang Y F and Chen X L 2019 Appl. Opt. 58 3053
[16] Gregory D G, Stuart J M, Joshua E R, Timothy S M, Peter A T, Michael G W and Mark E W 2010 Opt. Lett. 35 1542
[17] Zha C W, Peng W J, Wang X J, Wang Y S and Sun Y H 2017 Opt. Express 25 19740
[18] Meng D, Lai W C, He X B, Ma P F, Su R T, Zhou P and Yang L J 2019 Laser Phys. 29 aafd24
[19] Wang Y S, Feng Y J, Ma Y, Chang Z and Tang C 2020 IEEE Photon. J. PP 1
[20] Flores A, Robin C, Lanari A and Dajani I 2014 Opt. Express 22 17735
[21] Harish A V and Nilsson J 2019 IEEE J Sel. Top. Quantum Electron. 24 1
[22] Liu M Z, Yang Y F, Shen H, Zhang J P, Zou X X, Wang H B, Yuan L C, You Y, Bai G and He B 2020 Sci. Rep. 10 629
[23] Anderson B M, Flores A and Dajani I 2017 Opt. Express 25 17671
[24] Nikles M, Thevenaz L and Robert P A 1997 J. Lightwave. Technol. 15 1842
[25] Jiang L, Wang Y, Yang P, Zhang L, Yang L, Dai S and Lou C L 2020 Opt. Commun. 459 125040
[26] Tkach R W, Chraplyvy A R and Derosier R M 1987 Electron. Lett. 22 1011
[27] Mizuno Y and Nakamura K 2010 Opt. Lett. 35 3985
[28] Yeniay A, Delavaux J M P and Toulouse J 2002 J. Lightwave. Technol. 20 1425
[29] Koyamada Y, Sato S, Nakamura S, Sotobayashi H and Chujo W 2004 J. Lightwave. Technol. 22 631
[30] Lü Z W, He W M, Hasi W L J, Zhang Z and Gao W 2008 Chin. Phys. B 17 3765
[31] Boyd R W, Rzazewski K and Narum P 1990 Phys. Rev. A 42 5514
[32] Zhang Y J, Fu X H and Tian Y S 2017 Acta Phys. Sin. 66 024207 (in Chinese)
[33] Minardo A, Bernini R and Zeni L 2014 Opt. Express 22 17480
[1] A kind of multiwavelength erbium-doped fiber laser based on Lyot filter
Zhehai Zhou(周哲海), Jingyi Wu(吴婧仪), Kunlong Min(闵昆龙), Shuang Zhao(赵爽), and Huiyu Li(李慧宇). Chin. Phys. B, 2023, 32(3): 034205.
[2] Real-time observation of soliton pulsation in net normal-dispersion dissipative soliton fiber laser
Xu-De Wang(汪徐德), Xu Geng(耿旭), Jie-Yu Pan(潘婕妤), Meng-Qiu Sun(孙梦秋), Meng-Xiang Lu(陆梦想), Kai-Xin Li(李凯芯), and Su-Wen Li(李素文). Chin. Phys. B, 2023, 32(2): 024210.
[3] Precise determination of characteristic laser frequencies by an Er-doped fiber optical frequency comb
Shiying Cao(曹士英), Yi Han(韩羿), Yongjin Ding(丁永今), Baike Lin(林百科), and Zhanjun Fang(方占军). Chin. Phys. B, 2022, 31(7): 074207.
[4] Sequential generation of self-starting diverse operations in all-fiber laser based on thulium-doped fiber saturable absorber
Pei Zhang(张沛), Kaharudin Dimyati, Bilal Nizamani, Mustafa M. Najm, and S. W. Harun. Chin. Phys. B, 2022, 31(6): 064204.
[5] Single-frequency distributed Bragg reflector Tm:YAG ceramic derived all-glass fiber laser at 1.95 μm
Guo-Quan Qian(钱国权), Min-Bo Wu(吴敏波), Guo-Wu Tang(唐国武), Min Sun(孙敏),Dong-Dan Chen(陈东丹), Zhi-Bin Zhang(张志斌), Hui Luo(罗辉), and Qi Qian(钱奇). Chin. Phys. B, 2022, 31(12): 124205.
[6] Spatiotemporal mode-locked multimode fiber laser with dissipative four-wave mixing effect
Ming-Wei Qiu(邱明伟), Chao-Qun Cai(蔡超群), and Zu-Xing Zhang(张祖兴). Chin. Phys. B, 2022, 31(10): 104207.
[7] Distributed analysis of forward stimulated Brillouin scattering for acoustic impedance sensing by extraction of a 2nd-order local spectrum
Yu-Lian Yang(杨玉莲), Jia-Bing Lin(林佳兵), Li-Ming Liu(刘黎明), Xin-Hong Jia(贾新鸿), Wen-Yan Liang(梁文燕), Shi-Rong Xu(许世蓉), and Li Jiang(姜利). Chin. Phys. B, 2021, 30(8): 084205.
[8] A low-threshold multiwavelength Brillouin fiber laser with double-frequency spacing based on a small-core fiber
Lu-Lu Xu(徐路路), Ying-Ying Wang(王莹莹), Li Jiang(江丽), Pei-Long Yang(杨佩龙), Lei Zhang(张磊), and Shi-Xun Dai(戴世勋). Chin. Phys. B, 2021, 30(8): 084210.
[9] Generation of multi-wavelength square pulses in the dissipative soliton resonance regime by a Yb-doped fiber laser
Xude Wang(汪徐德), Simin Yang(杨思敏), Mengqiu Sun(孙梦秋), Xu Geng(耿旭), Jieyu Pan (潘婕妤), Shuguang Miao(苗曙光), and Suwen Li(李素文). Chin. Phys. B, 2021, 30(6): 064212.
[10] Zinc-oxide/PDMS-clad tapered fiber saturable absorber for passively mode-locked erbium-doped fiber laser
F D Muhammad, S A S Husin, E K Ng, K Y Lau, C A C Abdullah, and M A Mahdi. Chin. Phys. B, 2021, 30(5): 054204.
[11] Generation of cavity-birefringence-dependent multi-wavelength bright-dark pulse pair in a figure-eight thulium-doped fiber laser
Xiao-Fa Wang(王小发), Dong-Xin Liu(刘东鑫), Hui-Hui Han(韩慧慧), and Hong-Yang Mao(毛红炀). Chin. Phys. B, 2021, 30(5): 054205.
[12] Efficient loading of ultracold sodium atoms in an optical dipole trap from a high power fiber laser
Jing Xu(徐静), Wen-Liang Liu(刘文良), Ning-Xuan Zheng(郑宁宣), Yu-Qing Li(李玉清), Ji-Zhou Wu(武寄洲), Peng Li (李鹏), Yong-Ming Fu(付永明), Jie Ma(马杰), Lian-Tuan Xiao(肖连团), and Suo-Tang Jia(贾锁堂). Chin. Phys. B, 2021, 30(3): 033701.
[13] Generation of domain-wall solitons in an anomalous dispersion fiber ring laser
Wen-Yan Zhang(张文艳), Kun Yang(杨坤), Li-Jie Geng(耿利杰), Nan-Nan Liu(刘楠楠), Yun-Qi Hao(郝蕴琦), Tian-Hao Xian(贤天浩), and Li Zhan(詹黎). Chin. Phys. B, 2021, 30(11): 114212.
[14] Optomechanical-organized multipulse dynamics in ultrafast fiber laser
Lin Huang(黄琳), Yu-Sheng Zhang(张裕生), and Yu-Dong Cui(崔玉栋). Chin. Phys. B, 2021, 30(11): 114203.
[15] Suppression of multi-pulse formation in all-polarization-maintaining figure-9 erbium-doped fiber mode-locked laser
Jun-Kai Shi(石俊凯), Deng-Feng Dong(董登峰), Ying-Ling Pan(潘映伶), Guan-Nan Li(李冠楠), Yao Li(黎尧), Li-Tuo Liu(刘立拓), Xiao-Mei Chen(陈晓梅), and Wei-Hu Zhou(周维虎). Chin. Phys. B, 2021, 30(1): 014206.
No Suggested Reading articles found!