Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(6): 064101    DOI: 10.1088/1674-1056/abdb23

Characteristic mode analysis of wideband high-gain and low-profile metasurface antenna

Kun Gao(高坤), Xiang-Yu Cao(曹祥玉), Jun Gao(高军), Huan-Huan Yang(杨欢欢), and Jiang-Feng Han(韩江枫)
Information and Navigation College of Air Force Engineering University, Xi'an 710077, China
Abstract  A wideband high-gain and low-profile metasurface antenna is proposed by analyzing characteristic quantities and parameters in the characteristic modes (CMs). The detailed modal current and modal weighting coefficient are analyzed to explain the broadband operation and high gain. A dominant characteristic mode is well excited, leading to a broadband operation. The mode behaviors of the excitation are changed to suppress the unwanted higher-order modes and improve the radiation performance by changing the widths of two patches. The measured impedance bandwidth for -10 dB is 39.8% (5.3 GHz-7.94 GHz) with a gain of 7.8 dBi-10.04 dBi over the operating bandwidth.
Keywords:  characteristic mode analysis      wideband      high gain      metasurface antenna  
Received:  06 October 2020      Revised:  24 December 2020      Accepted manuscript online:  13 January 2021
PACS:  41.20.Jb (Electromagnetic wave propagation; radiowave propagation)  
  73.20.Mf (Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61671464 and 61801508), the Postdoctoral Innovative Talents Support Program of China (Grant No. BX20180375), and the Natural Science Research Fund of Shaanxi Province, China (Grant No. 2019JQ-103).
Corresponding Authors:  Kun Gao, Xiang-Yu Cao     E-mail:;

Cite this article: 

Kun Gao(高坤), Xiang-Yu Cao(曹祥玉), Jun Gao(高军), Huan-Huan Yang(杨欢欢), and Jiang-Feng Han(韩江枫) Characteristic mode analysis of wideband high-gain and low-profile metasurface antenna 2021 Chin. Phys. B 30 064101

[1] Tittl A, Leitis A, Liu M, Yesilkoy F, Choi D, Neshev D N, Kivshar Y S and Altug H 2018 Science 360 1105
[2] Francesco, Aieta, Mikhail, Kats, Patrice, Genevet, Federico and Capasso 2015 Science 347 1342
[3] Jia S L, Wan X, Su P, Zhao Y J and Cui T J 2016 AIP Adv. 6 045024
[4] Yuan Y, Zhang K, Ratni B, Song Q, Ding X, Wu Q, Burokur S N and Genevet P 2020 Nat. Commun. 11 4186
[5] Yuan Y, Sun S, Chen Y, Zhang K, Ding X, Ratni B, Wu Q, Burokur S N and Qiu C W 2020 Adv. Sci. (Weinh) 7 2001437
[6] Zhang K, Yuan Y, Ding X, Li H, Ratni B, Wu Q, Liu J, Burokur S N and Tan J 2020 Laser Photon. Rev.
[7] Lin B Q, L-T L, Guo J X, Wang Z L, Huang S Q and Wang Y W 2020 Chin. Phys. B 29 104205
[8] Zhang K, Yuan Y, Ding X, Ratni B, Burokur S N and Wu Q 2019 ACS Appl. Mater. Interfaces 11 28423
[9] Zhang C, Cao X Y, Gao J and Li S J 2018 Radioengineering 27 379
[10] Zhu H, Cheung S W, Chung K L and Yuk T I 2013 IEEE Trans. Anten. Propag. 61 4615
[11] Zhu H, Cheung S W, Liu X and Yuk T I 2014 IEEE Trans. Anten. Propag. 62 2891
[12] Zhu H, Chung K L, Sun X L, Cheung S W and Yuk T I 2012 International symposium on antennas and propagation, pp. 1-2
[13] Pandi S, Balanis C A and Birtcher C R 2015 IEEE Trans. Anten. Propag. 63 3016
[14] Pfeiffer C and Grbic A 2015 IEEE Trans. Anten. Propag. 63 3248
[15] Lin F H and Chen Z N 2018 IEEE Trans. Anten. Propag. 66 1894
[16] Lin F H and Chen Z N 2017 IEEE Trans. Anten. Propag. 65 1706
[17] Liang Z, Ouyang J and Yang F 2018 J. Electromagn. Waves Appl. 32 2304
[18] Chen Y and Wang C F 2012 IEEE Anten. Wireless Propag. Lett. 11 1474
[19] Lin J and Chu Q 2018 IEEE Trans. Anten. Propag. 66 3148
[20] Zhao J, Chen Y and Yang S 2018 IEEE Anten. Wireless Propag. Lett. 17 1166
[21] Garbacz and R. J 1965 Proc. IEEE 53 856
[22] Harrington R F and Mautz J 1971 IEEE Trans. Anten. Propag. 19 622
[23] Harrington R F and Mautz J 1971 IEEE Trans. Anten. Propag. 19 629
[24] Harrington R F, Mautz J and Chang Y 1972 IEEE Trans. Anten. Propag. 20 194
[25] Chang Y and Harrington R 1977 IEEE Trans. Anten. Propag. 25 789
[26] Chen Y and Wang C F 2015 Characteristic Modes: Theory and Applications in Antenna Engineering (Hoboken, New Jersey: Wiley Publishing)
[27] Ling F, Wang C and Jin J 2000 IEEE Trans. Microwave Theor. Techniq. 48 832
[28] Martens R, Safin E and Manteuffel D 2011 Loughborough Antennas & Propagation Conference, p. 1
[29] Martens R, Safin E and Manteuffel D 2011 Proceedings of the 5$th European Conference on Antennas and Propagation (EUCAP), pp. 2492-2496
[1] High gain and circularly polarized substrate integrated waveguide cavity antenna array based on metasurface
Hao Bai(白昊), Guang-Ming Wang(王光明), and Xiao-Jun Zou(邹晓鋆). Chin. Phys. B, 2023, 32(1): 014101.
[2] Ultra-wideband surface plasmonic bandpass filter with extremely wide upper-band rejection
Xue-Wei Zhang(张雪伟), Shao-Bin Liu(刘少斌), Qi-Ming Yu(余奇明), Ling-Ling Wang(王玲玲), Kun Liao(廖昆), and Jian Lou(娄健). Chin. Phys. B, 2022, 31(11): 114101.
[3] High-confinement ultra-wideband bandpass filter using compact folded slotline spoof surface plasmon polaritons
Xue-Wei Zhang(张雪伟), Shao-Bin Liu(刘少斌), Ling-Ling Wang(王玲玲), Qi-Ming Yu (余奇明), Jian-Lou(娄健), and Shi-Ning Sun(孙世宁). Chin. Phys. B, 2022, 31(1): 014102.
[4] Design of sextuple-mode triple-ring HTS UWB filter using two-round interpolation
Ming-En Tian(田明恩), Zhi-He Long(龙之河), You Lan(蓝友), Lei-Lei He(贺磊磊), and Tian-Liang Zhang(张天良). Chin. Phys. B, 2021, 30(5): 058503.
[5] Suppression of persistent photoconductivity in high gain Ga2O3 Schottky photodetectors
Haitao Zhou(周海涛), Lujia Cong(丛璐佳), Jiangang Ma(马剑钢), Bingsheng Li(李炳生), Haiyang Xu(徐海洋), and Yichun Liu(刘益春). Chin. Phys. B, 2021, 30(12): 126104.
[6] Ultra-wideband RCS reduction using novel configured chessboard metasurface
Ya-Qiang Zhuang(庄亚强), Guang-Ming Wang(王光明), He-Xiu Xu(许河秀). Chin. Phys. B, 2017, 26(5): 054101.
[7] Ultra-wideband reflective polarization converter based on anisotropic metasurface
Jia-Liang Wu(吴家梁), Bao-Qin Lin(林宝勤), Xin-Yu Da(达新宇). Chin. Phys. B, 2016, 25(8): 088101.
[8] Shannon information capacity of time reversal wideband multiple-input multiple-output system based on correlated statistical channels
Yu Yang(杨瑜), Bing-Zhong Wang(王秉中), Shuai Ding(丁帅). Chin. Phys. B, 2016, 25(5): 050101.
[9] Ultra-wideband circular-polarization converter with micro-split Jerusalem-cross metasurfaces
Xi Gao(高喜), Xing-Yang Yu(余行阳), Wei-Ping Cao(曹卫平), Yan-Nan Jiang(姜彦南), Xin-Hua Yu(于新华). Chin. Phys. B, 2016, 25(12): 128102.
[10] An ultra-wideband pattern reconfigurable antenna based on graphene coating
YanNan Jiang(姜彦南), Rui Yuan(袁锐), Xi Gao(高喜), Jiao Wang(王娇), SiMin Li(李思敏), Yi-Yu Lin(林诒玉). Chin. Phys. B, 2016, 25(11): 118402.
[11] High-efficiency wideband flat focusing reflector mediated by metasurfaces
Yu Ji-Bao (余积宝), Ma Hua (马华), Wang Jia-Fu (王甲富), Li Yong-Feng (李勇峰), Feng Ming-De (冯明德), Qu Shao-Bo (屈绍波). Chin. Phys. B, 2015, 24(9): 098102.
[12] Transportation-cyber-physical-systems-oriented engine cylinder pressure estimation using high gain observer
Li Yong-Fu (李永福), Kou Xiao-Pei (寇晓培), Zheng Tai-Xiong (郑太雄), Li Yin-Guo (李银国). Chin. Phys. B, 2015, 24(5): 058901.
[13] A two-stage spectrum sensing scheme based on energy detection and a novel multitaper method
Qi Pei-Han (齐佩汉), Li Zan (李赞), Si Jiang-Bo (司江勃), Xiong Tian-Yi (熊天意). Chin. Phys. B, 2015, 24(4): 048401.
[14] Design of ultra wideband microwave absorber effectual for objects of arbitrary shape
Gong Yuan-Xun (宫元勋), Zhou Zhong-Xiang (周忠祥), Jiang Jian-Tang (姜建堂), Zhao Hong-Jie (赵宏杰). Chin. Phys. B, 2015, 24(12): 124101.
[15] Tunable ultra-wideband terahertz filter based on three-dimensional arrays of H-shaped plasmonic crystals
Yuan Cai (袁偲), Xu Shi-Lin (徐世林), Yao Jian-Quan (姚建铨), Zhao Xiao-Lei (赵晓蕾), Cao Xiao-Long (曹小龙), Wu Liang (吴亮). Chin. Phys. B, 2014, 23(1): 018102.
No Suggested Reading articles found!