Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(3): 037106    DOI: 10.1088/1674-1056/26/3/037106
Special Issue: TOPICAL REVIEW — 2D materials: physics and device applications
TOPICAL REVIEW—2D materials: physics and device applications Prev   Next  

Recent progress on integrating two-dimensional materials with ferroelectrics for memory devices and photodetectors

Jianlu Wang(王建禄), Weida Hu(胡伟达)
National Laboratory for Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China
Abstract  

Two-dimensional (2D) materials, such as graphene and MoS2 related transition metal dichalcogenides (TMDC), have attracted much attention for their potential applications. Ferroelectrics, one of the special and traditional dielectric materials, possess a spontaneous electric polarization that can be reversed by the application of an external electric field. In recent years, a new type of device, combining 2D materials with ferroelectrics, has been fabricated. Many novel devices have been fabricated, such as low power consumption memory devices, highly sensitive photo-transistors, etc. using this technique of hybrid systems incorporating ferroelectrics and 2D materials. This paper reviews two types of devices based on field effect transistor (FET) structures with ferroelectric gate dielectric construction (termed FeFET). One type of device is for logic applications, such as a graphene and TMDC FeFET for fabricating memory units. Another device is for optoelectric applications, such as high performance phototransistors using a graphene p-n junction. Finally, we discuss the prospects for future applications of 2D material FeFET.

Keywords:  two-dimensional materials      ferroelectrics      FeFET      PVDF      photodetector  
Received:  07 October 2016      Revised:  24 November 2016      Accepted manuscript online: 
PACS:  71.20.Rv (Polymers and organic compounds)  
  72.80.Ga (Transition-metal compounds)  
  77.55.fp (Other ferroelectric films)  
  81.05.ue (Graphene)  
Fund: 

Project supported by the Major State Basic Research Development Program of China (Grant Nos. 2013CB922302 and 2016YFA0203900), the Natural Science Foundation of China (Grant Nos. 11322441, 614404147, 61574152, and 61674157), and the Key Research Project of Frontier Science of Chinese Academy of Sciences (Grant Nos. QYZDB-SSW-JSC016 and QYZDB-SSW-JSC031).

Corresponding Authors:  Jianlu Wang, Weida Hu     E-mail:  jlwang@mail.sitp.ac.cn;wdhu@mail.sitp.ac.cn

Cite this article: 

Jianlu Wang(王建禄), Weida Hu(胡伟达) Recent progress on integrating two-dimensional materials with ferroelectrics for memory devices and photodetectors 2017 Chin. Phys. B 26 037106

[1] Millman J 1985 Electronic Devices and Circuits (Singapore: McGraw-Hill International) p. 397
[2] Waldrop M M 2016 Nature 530 7589
[3] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V and Grigorieva I V 2004 Science 306 5696
[4] Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V and Firsov A A 2005 Nature 438 7065
[5] Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N and Strano M S 2012 Nature Nanotechnology 7 699
[6] He Q Y, Zeng Z Y, Yin Z Y, Li H, Wu S X, Huang X and Zhang H 2012 Small 8 2994
[7] Pu J, Yomogida Y, Liu K K, Li L J, Iwasa Y and Takenobu T 2012 Nano Lett. 12 4013
[8] Britnell L, Gorbachev R V, Jalil R, Belle B D, Schedin F, Mishchenko A, Georgiou T, Katsnelson M I, Eaves L, Morozov S V, Peres N M R, Leist J, Geim A K, Novoselov K S and Ponomarenko L A 2012 Science 335 947
[9] Avouris P, Freitag M and Perebeinos V 2008 Nat. Photon. 2 341
[10] Scholes G D and Rumbles G 2006 Nat. Mater. 5 683
[11] Kamat P V 2008 J. Phys. Chem. C 112 18737
[12] Lopez-Sanchez O, Lembke D, Kayci M, Radenovic A and Kis A 2013 Nature Nanotechnology 8 497
[13] Roy K, Padmanabhan M, Goswami S, Sai T P, Ramalingam G, Raghavan S and Ghosh A 2013 Nature Nanotechnology 8 826
[14] Zhang W, Chuu C P, Huang J K, Chen C H, Tsai M L, Chang Y H, Liang C T, Chen Y Z, He J H, Chou M Y and Li L J 2014 Sci. Rep. 4 3826
[15] Zhang W, Huang J K, Chen C H, Chang Y H, Cheng Y J and Li L J 2013 Adv. Mater. 25 3456
[16] Georgiou T, Jalil R, Belle B D, Britnell L, Gorbachev R V, Morozov S V, Kim Y J, Gholinia A, Haigh S J, Makarovsky O, Eaves L, Ponomarenko L A, Geim A K, Novoselov K S and Mishchenko A 2013 Nature Nanotechnology 8 100
[17] Abderrahmane A, Ko P J, Thu T V, Ishizawa S, Takamura T and Sandhu A 2014 Nanotechnology 25 365202
[18] Xia J, Huang X, Liu L Z, Wang M, Wang L, Huang B, Zhu D D, Li J J, Gu C Z and Meng X M 2014 Nanoscale 6 8949
[19] Britnell L, Ribeiro RM, Eckmann A, Jalil R, Belle BD, Mishchenko A, Kim Y J, Georgiou T, Morozov S V, Grigorenko A N, Geim A K, Casiraghi C, Castro Neto A H and Novoselov K S 2013 Science 340 1311
[20] Castro Neto A H, Guinea F, Peres N M R, Novoselov K S and Geim A K 2009 Rev. Mod. Phys. 81 109
[21] Das Sarma S, Adam S, Hwang E H and Rossi E 2011 Rev. Mod. Phys. 83 407
[22] Zhang Y, Tan Y W, Stormer H L and Kim P 2005 Nature 438 201
[23] Wang X R, Shi Y and Zhang R 2013 Chin. Phys. B 22 098505
[24] Mak KF, Lee C, Hone J, Shan J and Heinz T F 2010 Phys. Rev. Lett. 105 136805
[25] Novoselov K S, Jiang D, Schedin F, Booth T J, Khotkevich V V, Morozov S V and Geim A K 2005 Proceedings of the National Academy of Sciences of the United States of America 102 10451
[26] Lee C, Yan H, Brus L E, Heinz T F, Hone J and Ryu S 2010 ACS Nano 4 2695
[27] Bertolazzi S, Krasnozhon D and Kis A 2013 ACS Nano 7 3246
[28] Valasek J 1921 Phys. Rev. 17 475
[29] Dawber M, Rabe K M and Scott J F 2005 Rev. Mod. Phys. 77 1083
[30] Yuan S Z, Meng X J, Sun J L, Cui Y F, Wang J L, Tian L and Chu J H 2011 Phys. Lett. A 375 1612
[31] Wang J L, Yuan S Z, Tian L, Meng X J, Sun J L and Chu J H 2011 Appl. Phys. Lett. 98 052906
[32] Tian B B, Chen Z H, Jiang A Q, Zhao X L, Liu B L, Wang J L, Han L, Sun S, Sun J L, Meng X J and Chu J H 2013 Appl. Phys. Lett. 103 042909
[33] Wang J L, Liu B L, Zhao X L, Tian B B, Zou Y H, Sun S, Shen H, Sun J L, Meng X J and Chu J H 2014 Appl. Phys. Lett. 104 182907
[34] Zhao X L, Tian B B, Liu B L, Wang J L, Han L, Sun J L, Meng X J and Chu J H 2014 Thin Solid Films 551 171
[35] Zhao X L, Wang J L, Liu B L, Tian B B, Zou Y H, Sun S, Sun J L, Meng X J and Chu J H 2014 Appl. Phys. Lett. 104 082903
[36] Zhang Q M, Bharti V and Zhao X 1998 Science 280 2101
[37] Chu B J, Zhou X, Ren K L, Neese B, Lin M R, Wang Q, Bauer F and Zhang Q M 2006 Science 313 334
[38] Ducharme S, Bune A V, Fridkin V M, Blinov L M, Palto S P, Sorokin A V, Yudin S G and Zlatkin A 1998 Nature 391 874
[39] Norbert R and Malik 1995 Electronic Circuits: Analysis, Simulation, and Design (NJ: Prentice Hall) pp. 315-316
[40] Ghausi M S 2001 Microelectronic Circuits (NJ: Pearson Education/Prentice-Hall) p. 102
[41] Naber R C G, Tanase C, Blom P W M, Gelinck G H, Marsman A W, Touwslager F J, Setayesh S and De Leeuw D W 2005 Nat. Mater. 4 243
[42] Sugibuchi K, Kurogi Y and Endo N 1975 J. Appl. Phys. 46 2877
[43] Miller S L and McWhorter P J 1992 J. Appl. Phys. 72 5999
[44] Aziz A, Ghosh S, Datta S and Gupta S K 2016 IEEE Electron Dev. Lett. 37 805
[45] Perlman S S and Ludewig K H 1967 IEEE Transactions on Electron Devices ED14 816
[46] Wang X D, Wang P, Wang J L, Hu W, Zhou X, Guo N, Huang H, Sun S, Shen H, Lin T, Tang M H, Liao L, Jiang A Q, Sun J L, Meng X J, Chen X S, Lu W and Chu J H 2015 Adv Mater. 27 6575
[47] Lu N, Sun P X, Li L, Liu Q, Long S B, Lv H B and Liu M 2016 Chin. Phy. B 25 056501
[48] Dai Y H, Pan Z Y, Chen Z, Wang F F, Li N, Jin B and Li X F 2016 Acta Phys. Sin. 65 073101 (in Chinese)
[49] Liu S, Lu N D, Zhao X L, Xu H, Banerjee W, Lv H B, Long S B, Qing J, Liu Q and Liu M 2016 Adv. Mater. (Deerfield Beach, Fla)
[50] Geim A K and Novoselov K S 2007 Nat. Mater. 6 183
[51] Geim A K 2009 Science 324 1530
[52] Mueller T, Xia F and Avouris P 2010 Nat. Photon. 4 297
[53] Xia F, Mueller T, Lin Y M, Valdes-Garcia A and Avouris P 2009 Nat. Nanotech. 4 839
[54] Hong X, Posadas A, Zou K, Ahn C H and Zhu J 2009 Phys. Rev. Lett. 102 136808
[55] Zheng Y, Ni G X, Toh C T, Tan C Y, Yao K and Ozyilmaz B 2010 Phys. Rev. Lett. 105 166602
[56] Lee H S, Min S W, Park M K, Lee Y T, Jeon P J, Kim J H, Ryu S and Im S 2012 Small 8 3111
[57] Zhang X W, Xie D, Xu J L, Sun Y L, Li X, Zhang C, Dai R X, Zhao Y F, Li X M, Li X and Zhu H W 2015 IEEE Electron Dev. Lett. 36 784
[58] Song E B, Lian B and Min Kim S 2011 Appl. Phys. Lett. 99 042109
[59] Raghavan S, Stolichnov I, Setter N, Heron J S, Tosun M and Kis A 2012 Appl. Phys. Lett. 100 023507
[60] Yusuf M H, Nielsen B, Dawber M and Du X 2014 Nano Lett. 14 5437
[61] Doh Y J and Yi G C 2010 Nanotechnology 21 105204
[62] Bonaccorso F, Sun Z, Hasan T and Ferrari A C 2010 Nat. Photon. 4 611
[63] Lopez-Sanchez O, Lembke D, Kayci M, Radenovic A and Kis A 2013 Nat. Nanotech. 8 497
[64] Yin Z Y, Li H, Li H, Jiang L, Shi Y M, Sun Y H, Lu G, Zhang Q, Chen X D and Zhang H 2012 ACS Nano 6 74
[65] Lee H S, Min S W, Chang Y G, Park M K, Nam T, Kim H, Ryu S and Im S 2012 Nano Lett. 12 3695
[66] Qiu W C and Hu W D 2015 Science China-Physics Mechanics & Astronomy 58 027001
[67] Hu W D, Liang J, Yue F Y, Chen X S and Lu W 2016 Journal of Infrared and Millimeter Waves 35 25
[68] Huang H, Wang X D and Wang P 2016 RSC Adv. 6 87416
[69] Wu G J, Wang X D, Wang P, Huang H, Chen Y, Sun S, Shen H, Lin T, Wang J L, Tian B B, Sun J L, Meng X J and Chu J H 2016 Nanotechnology 27 364002
[70] Baeumer C, Saldana-Greco D, Martirez J M P, Rappe A M, Shim M and Martin L W 2015 Nat Commun. 6 6136
[71] Zheng D S, Wang J L, Hu W D, Liao L, Fang H H, Guo N, Wang P, Gong F, Wang X D, Fan Z Y, Wu X, Meng X J, Chen X S and Lu W 2016 Nano Lett. 16 2548
[72] Zheng D S, Fang H H, Wang P, Luo W J, Gong F, Ho J C, Chen X S, Lu W, Liao L, Wang J L and Hu W D 2016 Adv. Function. Mater. 26 7690
[73] Chen Y, Wang X D, Wang P, Huang H, Wu G J, Tian B B, Hong Z C, Wang Y T, Sun S, Shen H, Wang J L, Hu W D, Sun J L, Meng X J, Chu J H 2016 ACS Applied Materials & Interfaces. 8 32083
[74] Fang H H and Hu W D 2017 Science China-Physics Mechanics & Astronomy. 60 027031
[1] High-temperature ferromagnetism and strong π-conjugation feature in two-dimensional manganese tetranitride
Ming Yan(闫明), Zhi-Yuan Xie(谢志远), and Miao Gao(高淼). Chin. Phys. B, 2023, 32(3): 037104.
[2] High-performance extended short-wavelength infrared PBn photodetectors based on InAs/GaSb/AlSb superlattices
Junkai Jiang(蒋俊锴), Faran Chang(常发冉), Wenguang Zhou(周文广), Nong Li(李农), Weiqiang Chen(陈伟强), Dongwei Jiang(蒋洞微), Hongyue Hao(郝宏玥), Guowei Wang(王国伟), Donghai Wu(吴东海), Yingqiang Xu(徐应强), and Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2023, 32(3): 038503.
[3] A self-driven photodetector based on a SnS2/WS2 van der Waals heterojunction with an Al2O3 capping layer
Hsiang-Chun Wang(王祥骏), Yuheng Lin(林钰恒), Xiao Liu(刘潇), Xuanhua Deng(邓煊华),Jianwei Ben(贲建伟), Wenjie Yu(俞文杰), Deliang Zhu(朱德亮), and Xinke Liu(刘新科). Chin. Phys. B, 2023, 32(1): 018504.
[4] Dramatic reduction in dark current of β-Ga2O3 ultraviolet photodectors via β-(Al0.25Ga0.75)2O3 surface passivation
Jian-Ying Yue(岳建英), Xue-Qiang Ji(季学强), Shan Li(李山), Xiao-Hui Qi(岐晓辉), Pei-Gang Li(李培刚), Zhen-Ping Wu(吴真平), and Wei-Hua Tang(唐为华). Chin. Phys. B, 2023, 32(1): 016701.
[5] Efficiently enhanced energy storage performance of Ba2Bi4Ti5O18 film by co-doping Fe3+ and Ta5+ ion with larger radius
Qiong Wu(吴琼), Lei Zhao(赵雷), Xinghao Chen(陈兴豪), and Shifeng Zhao(赵世峰). Chin. Phys. B, 2022, 31(9): 097701.
[6] Computational studies on magnetism and ferroelectricity
Ke Xu(徐可), Junsheng Feng(冯俊生), and Hongjun Xiang(向红军). Chin. Phys. B, 2022, 31(9): 097505.
[7] A 4×4 metal-semiconductor-metal rectangular deep-ultraviolet detector array of Ga2O3 photoconductor with high photo response
Zeng Liu(刘增), Yu-Song Zhi(支钰崧), Mao-Lin Zhang(张茂林), Li-Li Yang(杨莉莉), Shan Li(李山), Zu-Yong Yan(晏祖勇), Shao-Hui Zhang(张少辉), Dao-You Guo(郭道友), Pei-Gang Li(李培刚), Yu-Feng Guo(郭宇锋), and Wei-Hua Tang(唐为华). Chin. Phys. B, 2022, 31(8): 088503.
[8] Half-metallicity induced by out-of-plane electric field on phosphorene nanoribbons
Xiao-Fang Ouyang(欧阳小芳) and Lu Wang(王路). Chin. Phys. B, 2022, 31(7): 077304.
[9] A self-powered and sensitive terahertz photodetection based on PdSe2
Jie Zhou(周洁), Xueyan Wang(王雪妍), Zhiqingzi Chen(陈支庆子), Libo Zhang(张力波), Chenyu Yao(姚晨禹), Weijie Du(杜伟杰), Jiazhen Zhang(张家振), Huaizhong Xing(邢怀中), Nanxin Fu(付南新), Gang Chen(陈刚), and Lin Wang(王林). Chin. Phys. B, 2022, 31(5): 050701.
[10] Improving the performance of a GaAs nanowire photodetector using surface plasmon polaritons
Xiaotian Zhu(朱笑天), Bingheng Meng(孟兵恒), Dengkui Wang(王登魁), Xue Chen(陈雪), Lei Liao(廖蕾), Mingming Jiang(姜明明), and Zhipeng Wei(魏志鹏). Chin. Phys. B, 2022, 31(4): 047801.
[11] Graphene-based heterojunction for enhanced photodetectors
Haiting Yao(姚海婷), Xin Guo(郭鑫), Aida Bao(鲍爱达), Haiyang Mao(毛海央),Youchun Ma(马游春), and Xuechao Li(李学超). Chin. Phys. B, 2022, 31(3): 038501.
[12] Facile sensitizing of PbSe film for near-infrared photodetector by microwave plasma processing
Kangyi Zhao(赵康伊), Shuanglong Feng(冯双龙), Chan Yang(杨婵),Jun Shen(申钧), and Yongqi Fu(付永启). Chin. Phys. B, 2022, 31(3): 038504.
[13] A broadband self-powered UV photodetector of a β-Ga2O3/γ-CuI p-n junction
Wei-Ming Sun(孙伟铭), Bing-Yang Sun(孙兵阳), Shan Li(李山), Guo-Liang Ma(麻国梁), Ang Gao(高昂), Wei-Yu Jiang(江为宇), Mao-Lin Zhang(张茂林), Pei-Gang Li(李培刚), Zeng Liu(刘增), and Wei-Hua Tang(唐为华). Chin. Phys. B, 2022, 31(2): 024205.
[14] Anisotropic plasmon dispersion and damping in multilayer 8-Pmmn borophene structures
Kejian Liu(刘可鉴), Jian Li(李健), Qing-Xu Li(李清旭), and Jia-Ji Zhu(朱家骥). Chin. Phys. B, 2022, 31(11): 117303.
[15] Epitaxy of III-nitrides on two-dimensional materials and its applications
Yu Xu(徐俞), Jianfeng Wang(王建峰), Bing Cao(曹冰), and Ke Xu(徐科). Chin. Phys. B, 2022, 31(11): 117702.
No Suggested Reading articles found!