Special Issue:
TOPICAL REVIEW — 2D materials: physics and device applications
|
TOPICAL REVIEW—2D materials: physics and device applications |
Prev
Next
|
|
|
Recent progress on integrating two-dimensional materials with ferroelectrics for memory devices and photodetectors |
Jianlu Wang(王建禄), Weida Hu(胡伟达) |
National Laboratory for Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China |
|
|
Abstract Two-dimensional (2D) materials, such as graphene and MoS2 related transition metal dichalcogenides (TMDC), have attracted much attention for their potential applications. Ferroelectrics, one of the special and traditional dielectric materials, possess a spontaneous electric polarization that can be reversed by the application of an external electric field. In recent years, a new type of device, combining 2D materials with ferroelectrics, has been fabricated. Many novel devices have been fabricated, such as low power consumption memory devices, highly sensitive photo-transistors, etc. using this technique of hybrid systems incorporating ferroelectrics and 2D materials. This paper reviews two types of devices based on field effect transistor (FET) structures with ferroelectric gate dielectric construction (termed FeFET). One type of device is for logic applications, such as a graphene and TMDC FeFET for fabricating memory units. Another device is for optoelectric applications, such as high performance phototransistors using a graphene p-n junction. Finally, we discuss the prospects for future applications of 2D material FeFET.
|
Received: 07 October 2016
Revised: 24 November 2016
Accepted manuscript online:
|
PACS:
|
71.20.Rv
|
(Polymers and organic compounds)
|
|
72.80.Ga
|
(Transition-metal compounds)
|
|
77.55.fp
|
(Other ferroelectric films)
|
|
81.05.ue
|
(Graphene)
|
|
Fund: Project supported by the Major State Basic Research Development Program of China (Grant Nos. 2013CB922302 and 2016YFA0203900), the Natural Science Foundation of China (Grant Nos. 11322441, 614404147, 61574152, and 61674157), and the Key Research Project of Frontier Science of Chinese Academy of Sciences (Grant Nos. QYZDB-SSW-JSC016 and QYZDB-SSW-JSC031). |
Corresponding Authors:
Jianlu Wang, Weida Hu
E-mail: jlwang@mail.sitp.ac.cn;wdhu@mail.sitp.ac.cn
|
Cite this article:
Jianlu Wang(王建禄), Weida Hu(胡伟达) Recent progress on integrating two-dimensional materials with ferroelectrics for memory devices and photodetectors 2017 Chin. Phys. B 26 037106
|
[1] |
Millman J 1985 Electronic Devices and Circuits (Singapore: McGraw-Hill International) p. 397
|
[2] |
Waldrop M M 2016 Nature 530 7589
|
[3] |
Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V and Grigorieva I V 2004 Science 306 5696
|
[4] |
Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V and Firsov A A 2005 Nature 438 7065
|
[5] |
Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N and Strano M S 2012 Nature Nanotechnology 7 699
|
[6] |
He Q Y, Zeng Z Y, Yin Z Y, Li H, Wu S X, Huang X and Zhang H 2012 Small 8 2994
|
[7] |
Pu J, Yomogida Y, Liu K K, Li L J, Iwasa Y and Takenobu T 2012 Nano Lett. 12 4013
|
[8] |
Britnell L, Gorbachev R V, Jalil R, Belle B D, Schedin F, Mishchenko A, Georgiou T, Katsnelson M I, Eaves L, Morozov S V, Peres N M R, Leist J, Geim A K, Novoselov K S and Ponomarenko L A 2012 Science 335 947
|
[9] |
Avouris P, Freitag M and Perebeinos V 2008 Nat. Photon. 2 341
|
[10] |
Scholes G D and Rumbles G 2006 Nat. Mater. 5 683
|
[11] |
Kamat P V 2008 J. Phys. Chem. C 112 18737
|
[12] |
Lopez-Sanchez O, Lembke D, Kayci M, Radenovic A and Kis A 2013 Nature Nanotechnology 8 497
|
[13] |
Roy K, Padmanabhan M, Goswami S, Sai T P, Ramalingam G, Raghavan S and Ghosh A 2013 Nature Nanotechnology 8 826
|
[14] |
Zhang W, Chuu C P, Huang J K, Chen C H, Tsai M L, Chang Y H, Liang C T, Chen Y Z, He J H, Chou M Y and Li L J 2014 Sci. Rep. 4 3826
|
[15] |
Zhang W, Huang J K, Chen C H, Chang Y H, Cheng Y J and Li L J 2013 Adv. Mater. 25 3456
|
[16] |
Georgiou T, Jalil R, Belle B D, Britnell L, Gorbachev R V, Morozov S V, Kim Y J, Gholinia A, Haigh S J, Makarovsky O, Eaves L, Ponomarenko L A, Geim A K, Novoselov K S and Mishchenko A 2013 Nature Nanotechnology 8 100
|
[17] |
Abderrahmane A, Ko P J, Thu T V, Ishizawa S, Takamura T and Sandhu A 2014 Nanotechnology 25 365202
|
[18] |
Xia J, Huang X, Liu L Z, Wang M, Wang L, Huang B, Zhu D D, Li J J, Gu C Z and Meng X M 2014 Nanoscale 6 8949
|
[19] |
Britnell L, Ribeiro RM, Eckmann A, Jalil R, Belle BD, Mishchenko A, Kim Y J, Georgiou T, Morozov S V, Grigorenko A N, Geim A K, Casiraghi C, Castro Neto A H and Novoselov K S 2013 Science 340 1311
|
[20] |
Castro Neto A H, Guinea F, Peres N M R, Novoselov K S and Geim A K 2009 Rev. Mod. Phys. 81 109
|
[21] |
Das Sarma S, Adam S, Hwang E H and Rossi E 2011 Rev. Mod. Phys. 83 407
|
[22] |
Zhang Y, Tan Y W, Stormer H L and Kim P 2005 Nature 438 201
|
[23] |
Wang X R, Shi Y and Zhang R 2013 Chin. Phys. B 22 098505
|
[24] |
Mak KF, Lee C, Hone J, Shan J and Heinz T F 2010 Phys. Rev. Lett. 105 136805
|
[25] |
Novoselov K S, Jiang D, Schedin F, Booth T J, Khotkevich V V, Morozov S V and Geim A K 2005 Proceedings of the National Academy of Sciences of the United States of America 102 10451
|
[26] |
Lee C, Yan H, Brus L E, Heinz T F, Hone J and Ryu S 2010 ACS Nano 4 2695
|
[27] |
Bertolazzi S, Krasnozhon D and Kis A 2013 ACS Nano 7 3246
|
[28] |
Valasek J 1921 Phys. Rev. 17 475
|
[29] |
Dawber M, Rabe K M and Scott J F 2005 Rev. Mod. Phys. 77 1083
|
[30] |
Yuan S Z, Meng X J, Sun J L, Cui Y F, Wang J L, Tian L and Chu J H 2011 Phys. Lett. A 375 1612
|
[31] |
Wang J L, Yuan S Z, Tian L, Meng X J, Sun J L and Chu J H 2011 Appl. Phys. Lett. 98 052906
|
[32] |
Tian B B, Chen Z H, Jiang A Q, Zhao X L, Liu B L, Wang J L, Han L, Sun S, Sun J L, Meng X J and Chu J H 2013 Appl. Phys. Lett. 103 042909
|
[33] |
Wang J L, Liu B L, Zhao X L, Tian B B, Zou Y H, Sun S, Shen H, Sun J L, Meng X J and Chu J H 2014 Appl. Phys. Lett. 104 182907
|
[34] |
Zhao X L, Tian B B, Liu B L, Wang J L, Han L, Sun J L, Meng X J and Chu J H 2014 Thin Solid Films 551 171
|
[35] |
Zhao X L, Wang J L, Liu B L, Tian B B, Zou Y H, Sun S, Sun J L, Meng X J and Chu J H 2014 Appl. Phys. Lett. 104 082903
|
[36] |
Zhang Q M, Bharti V and Zhao X 1998 Science 280 2101
|
[37] |
Chu B J, Zhou X, Ren K L, Neese B, Lin M R, Wang Q, Bauer F and Zhang Q M 2006 Science 313 334
|
[38] |
Ducharme S, Bune A V, Fridkin V M, Blinov L M, Palto S P, Sorokin A V, Yudin S G and Zlatkin A 1998 Nature 391 874
|
[39] |
Norbert R and Malik 1995 Electronic Circuits: Analysis, Simulation, and Design (NJ: Prentice Hall) pp. 315-316
|
[40] |
Ghausi M S 2001 Microelectronic Circuits (NJ: Pearson Education/Prentice-Hall) p. 102
|
[41] |
Naber R C G, Tanase C, Blom P W M, Gelinck G H, Marsman A W, Touwslager F J, Setayesh S and De Leeuw D W 2005 Nat. Mater. 4 243
|
[42] |
Sugibuchi K, Kurogi Y and Endo N 1975 J. Appl. Phys. 46 2877
|
[43] |
Miller S L and McWhorter P J 1992 J. Appl. Phys. 72 5999
|
[44] |
Aziz A, Ghosh S, Datta S and Gupta S K 2016 IEEE Electron Dev. Lett. 37 805
|
[45] |
Perlman S S and Ludewig K H 1967 IEEE Transactions on Electron Devices ED14 816
|
[46] |
Wang X D, Wang P, Wang J L, Hu W, Zhou X, Guo N, Huang H, Sun S, Shen H, Lin T, Tang M H, Liao L, Jiang A Q, Sun J L, Meng X J, Chen X S, Lu W and Chu J H 2015 Adv Mater. 27 6575
|
[47] |
Lu N, Sun P X, Li L, Liu Q, Long S B, Lv H B and Liu M 2016 Chin. Phy. B 25 056501
|
[48] |
Dai Y H, Pan Z Y, Chen Z, Wang F F, Li N, Jin B and Li X F 2016 Acta Phys. Sin. 65 073101 (in Chinese)
|
[49] |
Liu S, Lu N D, Zhao X L, Xu H, Banerjee W, Lv H B, Long S B, Qing J, Liu Q and Liu M 2016 Adv. Mater. (Deerfield Beach, Fla)
|
[50] |
Geim A K and Novoselov K S 2007 Nat. Mater. 6 183
|
[51] |
Geim A K 2009 Science 324 1530
|
[52] |
Mueller T, Xia F and Avouris P 2010 Nat. Photon. 4 297
|
[53] |
Xia F, Mueller T, Lin Y M, Valdes-Garcia A and Avouris P 2009 Nat. Nanotech. 4 839
|
[54] |
Hong X, Posadas A, Zou K, Ahn C H and Zhu J 2009 Phys. Rev. Lett. 102 136808
|
[55] |
Zheng Y, Ni G X, Toh C T, Tan C Y, Yao K and Ozyilmaz B 2010 Phys. Rev. Lett. 105 166602
|
[56] |
Lee H S, Min S W, Park M K, Lee Y T, Jeon P J, Kim J H, Ryu S and Im S 2012 Small 8 3111
|
[57] |
Zhang X W, Xie D, Xu J L, Sun Y L, Li X, Zhang C, Dai R X, Zhao Y F, Li X M, Li X and Zhu H W 2015 IEEE Electron Dev. Lett. 36 784
|
[58] |
Song E B, Lian B and Min Kim S 2011 Appl. Phys. Lett. 99 042109
|
[59] |
Raghavan S, Stolichnov I, Setter N, Heron J S, Tosun M and Kis A 2012 Appl. Phys. Lett. 100 023507
|
[60] |
Yusuf M H, Nielsen B, Dawber M and Du X 2014 Nano Lett. 14 5437
|
[61] |
Doh Y J and Yi G C 2010 Nanotechnology 21 105204
|
[62] |
Bonaccorso F, Sun Z, Hasan T and Ferrari A C 2010 Nat. Photon. 4 611
|
[63] |
Lopez-Sanchez O, Lembke D, Kayci M, Radenovic A and Kis A 2013 Nat. Nanotech. 8 497
|
[64] |
Yin Z Y, Li H, Li H, Jiang L, Shi Y M, Sun Y H, Lu G, Zhang Q, Chen X D and Zhang H 2012 ACS Nano 6 74
|
[65] |
Lee H S, Min S W, Chang Y G, Park M K, Nam T, Kim H, Ryu S and Im S 2012 Nano Lett. 12 3695
|
[66] |
Qiu W C and Hu W D 2015 Science China-Physics Mechanics & Astronomy 58 027001
|
[67] |
Hu W D, Liang J, Yue F Y, Chen X S and Lu W 2016 Journal of Infrared and Millimeter Waves 35 25
|
[68] |
Huang H, Wang X D and Wang P 2016 RSC Adv. 6 87416
|
[69] |
Wu G J, Wang X D, Wang P, Huang H, Chen Y, Sun S, Shen H, Lin T, Wang J L, Tian B B, Sun J L, Meng X J and Chu J H 2016 Nanotechnology 27 364002
|
[70] |
Baeumer C, Saldana-Greco D, Martirez J M P, Rappe A M, Shim M and Martin L W 2015 Nat Commun. 6 6136
|
[71] |
Zheng D S, Wang J L, Hu W D, Liao L, Fang H H, Guo N, Wang P, Gong F, Wang X D, Fan Z Y, Wu X, Meng X J, Chen X S and Lu W 2016 Nano Lett. 16 2548
|
[72] |
Zheng D S, Fang H H, Wang P, Luo W J, Gong F, Ho J C, Chen X S, Lu W, Liao L, Wang J L and Hu W D 2016 Adv. Function. Mater. 26 7690
|
[73] |
Chen Y, Wang X D, Wang P, Huang H, Wu G J, Tian B B, Hong Z C, Wang Y T, Sun S, Shen H, Wang J L, Hu W D, Sun J L, Meng X J, Chu J H 2016 ACS Applied Materials & Interfaces. 8 32083
|
[74] |
Fang H H and Hu W D 2017 Science China-Physics Mechanics & Astronomy. 60 027031
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|