Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(9): 097701    DOI: 10.1088/1674-1056/ac5393
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Efficiently enhanced energy storage performance of Ba2Bi4Ti5O18 film by co-doping Fe3+ and Ta5+ ion with larger radius

Qiong Wu(吴琼), Lei Zhao(赵雷), Xinghao Chen(陈兴豪), and Shifeng Zhao(赵世峰)
Inner Mongolia Key Laboratory of Nanoscience and Nanotechnology, &School of Physical Science and Technology, Inner Mongolia University, Hohhot 010021, China
Abstract  We present an efficient strategy, that is the co-substitution of Fe3+ and Ta5+ ions with large radius for Ti4+ ion, to enhance energy storage performance of Ba2Bi4Ti5O18 film. For the films co-doped with Fe3+ and Ta5+ ions, the maximum polarization under the same external electric field is improved because the radius of Fe3+ and Ta5+ ions is larger than that of Ti4+ ion. Moreover, due to the composition and chemical disorder, the relaxor properties are also slightly improved, which can not be achieved by the film doped with Fe3+ ions only. What is more, for the films doped with Fe3+ ion only, the leakage current density increases greatly due to the charge imbalance, resulting in a significant decrease in breakdown strength. It is worth mentioning that the breakdown strength of Fe3+ and Ta5+ ions co-doped film does not decrease due to the charge balance. Another important point is the recoverable energy storage density of the films co-doped with Fe3+ and Ta5+ ions has been greatly improved based on the fact that the maximum external electric field does not decrease and the maximum polarization under the same external electric field increases. On top of that, the hysteresis of the polarization has also been improved. Finally, the co-doped films with Fe3+ and Ta5+ ions have good frequency and temperature stability.
Keywords:  Ba2Bi4Ti5O18 film      ferroelectrics      energy storage      co-doped      radius  
Received:  26 November 2021      Revised:  17 January 2022      Accepted manuscript online:  10 February 2022
PACS:  77.80.-e (Ferroelectricity and antiferroelectricity)  
  68.55.-a (Thin film structure and morphology)  
  84.60.Ve (Energy storage systems, including capacitor banks)  
Fund: This work was financially supported by the National Natural Science Foundation of China (Grant Nos. 12074204, 11864028, and 11904054) and the Natural Science Foundation of Inner Mongolia, China (Grant No. 2022ZD06).
Corresponding Authors:  Shifeng Zhao     E-mail:  zhsf@imu.edu.cn

Cite this article: 

Qiong Wu(吴琼), Lei Zhao(赵雷), Xinghao Chen(陈兴豪), and Shifeng Zhao(赵世峰) Efficiently enhanced energy storage performance of Ba2Bi4Ti5O18 film by co-doping Fe3+ and Ta5+ ion with larger radius 2022 Chin. Phys. B 31 097701

[1] Zhang W, Wang C, Lian J W, Jiang J and Jiang A Q 2021 Chin. Phys. Lett. 38 017701
[2] Chen G G, Lan J, Min T and Xiao J 2021 Chin. Phys. Lett. 38 087701
[3] Zhu L, Zhu X L, Liu X Q and Chen X M 2021 Chin. Phys. Lett. 38 047701
[4] Zheng Q F, Li Q, Xue S D, Wu Y H, Wang L J, Zhang Q, Qin X M, Zhao X Y, Wang F and Yang W G 2021 Chin. Phys. Lett. 38 026102
[5] Hua C Q, Bai H, Zheng Y, Xu Z A, Yang S A, Lu Y H and Wei S H 2021 Chin. Phys. Lett. 38 077501
[6] Ye Q, Shen Y H and Duan C G 2021 Chin. Phys. Lett. 38 087702
[7] Zhao W, Fu Z Q, Deng J M, Li S, Han Y F, Li M R, Wang X Y and Hong J W 2021 Chin. Phys. Lett. 38 037701
[8] Pan H, Lan S, Xu S Q, Zhang Q H, Yao H B, Liu Y Q, Meng F Q, Guo E J, Gu L, Yi D, Wang X R, Huang H, MacManus-Driscoll J L, Chen L Q, Jin K J, Nan C W and Lin Y H 2021 Science 374 100
[9] Wu Q, Wu X, Zhao Y S and Zhao S F 2020 Chin. Phys. Lett. 37 118401
[10] Pan H, Ma J, Ma J, Zhang Q, Liu X, Guan B, Gu L, Zhang X, Zhang Y J, Li L, Shen Y, Lin Y H and Nan C W 2018 Nat. Commun. 9 1813
[11] Zhang T D, Li W, Zhao Y, Yu Y and Fei W D 2018 Adv. Funct. Mater. 28 1706211
[12] Yang L T, Kong X, Li F, Hao H, Cheng Z X, Liu H X, Li J F and Zhang S J 2019 Prog. Mater. Sci. 102 72
[13] Wu Q, Zhao Y, Zhou Y P, Chen X H, Wu X and Zhao S F 2021 J. Alloys Compd. 881 160576
[14] Yan T L, Chen B, Liu G, Niu R P, Shang J, Gao S, Xue W H, Jin J, Yang J R and Li R W 2017 Chin. Phys. B 26 067702
[15] Zou C, Chen B, Zhu X J, Zuo Z H, Liu Y W, Chen Y F, Zhan Q F and Li R W 2011 Chin. Phys. B 20 117701
[16] Lin P T, Li X, Zhang L, Yin J H, Cheng X W, Wang Z H, Wu Y C and Wu G H 2014 Chin. Phys. B 23 047701
[17] Wu Q, Wu X and Zhao S F 2020 Appl. Phys. A 126 883
[18] Song B J, Wu S H, Li F, Chen P, Shen B and Zhai J W 2019 J. Mater. Chem. C 7 10891
[19] Shvartsman V V, Lupascu D C and Green D J 2012 J. Am. Ceram. Soc. 95 1
[20] Pan Z B, Wang P, Hou X, Yao L M, Zhang G Z, Wang J, Liu J J, Shen M, Zhang Y J, Jiang S L, Zhai J W and Wang Q 2020 Adv. Energy Mater. 2001536
[21] Cao J, Koval V, Zhang H F, Lin Y Y, Wu J Y, Meng N, Li Y, Li Z, Zhang H T and Yan H X 2019 J. Eur. Ceram. Soc. 39 1042
[22] Yang B B, Guo M Y, Tang X W, Wei R H, Hu L, Yang J, Song W H, Dai J M, Lou X J, Zhu X B and Sun Y P 2019 J. Mater. Chem. C 7 1888
[23] Yang B B, Guo M Y, Li C H, Song D P, Tang X W, Wei R H, Hu L, Lou X J, Zhu X B and Sun Y P 2019 Appl. Phys. Lett. 115 243901
[24] Ghosh D C and Biswas R 2003 Int. J. Mol. Sci. 4 379
[25] Wang J J, Wu P P, Ma X Q and Chen L Q 2010 J. Appl. Phys. 108 114105
[26] Huang Y H, Wang J J, Yang T N, Wu Y J, Chen X M and Chen L Q 2018 Appl. Phys. Lett. 112 102901
[27] Zhang H Z, Zhou J, Chen W, Yang X, Shen J and Wu C L 2017 J. Electron. Mater. 46 6167
[28] Raghavan C M, Kim J W, Kim S S and Kim J W 2014 J. Sol-Gel Sci. Technol. 73 403
[29] El-Bey A, El Bahraoui T, Taibi M, Belayachi A, Abd-Lefdil M, El-Naggar A M, Albassam A A, Fedorchuk A O, Lakshminarayana G, Czaja P and Kityk I V 2016 J. Alloys Compd. 684 412
[30] Fuentes S, Muñoz P, Barraza N, Chávez-Ángel E and Sotomayor Torres C M 2015 J. Sol-Gel Sci. Technol. 75 593
[31] Xie Y J, Hao H, Huang Z T, Zhang S, Cao M H, Yao Z H and Liu H X 2021 J. Alloys Compd. 884 161031
[32] Pan H, Li F, Liu Y, Zhang Q H, Wang M, Lan S, Zheng Y P, Ma J, Gu L, Shen Y, Yu P, Zhang S J, Chen L Q, Lin Y H and Nan C W 2019 Science 365 578
[33] Dang H T, Trinh T T, Nguyen C T, Do T V, Nguyen M D, Vu H N 2019 Mater. Chem. Phys. 234 210
[1] Computational studies on magnetism and ferroelectricity
Ke Xu(徐可), Junsheng Feng(冯俊生), and Hongjun Xiang(向红军). Chin. Phys. B, 2022, 31(9): 097505.
[2] Anionic redox reaction mechanism in Na-ion batteries
Xueyan Hou(侯雪妍), Xiaohui Rong(容晓晖), Yaxiang Lu(陆雅翔), and Yong-Sheng Hu(胡勇胜). Chin. Phys. B, 2022, 31(9): 098801.
[3] Mg-doped layered oxide cathode for Na-ion batteries
Yuejun Ding(丁月君), Feixiang Ding(丁飞翔), Xiaohui Rong(容晓晖), Yaxiang Lu(陆雅翔), and Yong-Sheng Hu(胡勇胜). Chin. Phys. B, 2022, 31(6): 068201.
[4] Synthetical optimization of the structure dimension for the thermoacoustic regenerator
Huifang Kang(康慧芳), Lingxiao Zhang(张凌霄), Jun Shen(沈俊),Xiachen Ding(丁夏琛), Zhenxing Li(李振兴), and Jun Liu(刘俊). Chin. Phys. B, 2022, 31(3): 034301.
[5] Synthesis and characterizations of boron and nitrogen co-doped high pressure and high temperature large single-crystal diamonds with increased mobility
Xin-Yuan Miao(苗辛原), Hong-An Ma(马红安), Zhuang-Fei Zhang(张壮飞), Liang-Chao Chen(陈良超), Li-Juan Zhou(周丽娟), Min-Si Li(李敏斯), and Xiao-Peng Jia(贾晓鹏). Chin. Phys. B, 2021, 30(6): 068102.
[6] Two-dimensional MnN utilized as high-capacity anode for Li-ion batteries
Junping Hu(胡军平), Zhangyin Wang(王章寅), Genrui Zhang(张根瑞), Yu Liu(刘宇), Ning Liu(刘宁), Wei Li(李未), Jianwen Li(李健文), Chuying Ouyang(欧阳楚英), and Shengyuan A. Yang(杨声远). Chin. Phys. B, 2021, 30(4): 046302.
[7] Density functional theory study of formaldehyde adsorption and decomposition on Co-doped defective CeO2 (110) surface
Yajing Zhang(张亚婧), Keke Song(宋可可), Shuo Cao(曹硕), Xiaodong Jian(建晓东), and Ping Qian(钱萍). Chin. Phys. B, 2021, 30(10): 103101.
[8] Tolman length of simple droplet: Theoretical study and molecular dynamics simulation
Shu-Wen Cui(崔树稳), Jiu-An Wei(魏久安), Qiang Li(李强), Wei-Wei Liu(刘伟伟), Ping Qian(钱萍), and Xiao Song Wang(王小松). Chin. Phys. B, 2021, 30(1): 016801.
[9] Energy storage performances regulated by BiMnO3 proportion in limited solid solution films
Fei Guo(郭飞), Zhifeng Shi(史智锋), Yaping Liu(刘亚平), and Shifeng Zhao(赵世峰). Chin. Phys. B, 2020, 29(11): 116801.
[10] Noise-like rectangular pulses in a mode-locked double-clad Er:Yb laser with a record pulse energy
Tianyi Wu(吴田宜), Zhiyuan Dou(窦志远), Bin Zhang(张斌), Jing Hou(侯静). Chin. Phys. B, 2020, 29(1): 014202.
[11] Elastic properties of anatase titanium dioxide nanotubes: A molecular dynamics study
Kang Yang(杨康), Liang Yang(杨亮), Chang-Zhi Ai(艾长智), Zhao Wang(王赵), Shi-Wei Lin(林仕伟). Chin. Phys. B, 2019, 28(10): 103102.
[12] Effect of an electric field on the electrocaloric response of ferroelectrics
Hongbo Liu(刘宏波). Chin. Phys. B, 2018, 27(12): 127701.
[13] Polaron effects in cylindrical GaAs/AlxGa1-xAs core-shell nanowires
Hui Sun(孙慧), Bing-Can Liu(刘炳灿), Qiang Tian(田强). Chin. Phys. B, 2017, 26(9): 097302.
[14] Recent progress on integrating two-dimensional materials with ferroelectrics for memory devices and photodetectors
Jianlu Wang(王建禄), Weida Hu(胡伟达). Chin. Phys. B, 2017, 26(3): 037106.
[15] First-principles investigation on N/C co-doped CeO2
Rong-Kang Ren(任荣康), Ming-Ju Zhang(张明举), Jian Peng(彭健), Meng Niu(牛猛), Jian-Ning Li(李健宁), Shu-Kai Zheng(郑树凯). Chin. Phys. B, 2017, 26(3): 036102.
No Suggested Reading articles found!