CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Ballistic transport and quantum interference in InSb nanowire devices |
Sen Li(李森)1, Guang-Yao Huang(黄光耀)1, Jing-Kun Guo(郭景琨)1, Ning Kang(康宁)1, Philippe Caroff2,3, Hong-Qi Xu(徐洪起)1 |
1 Key Laboratory for the Physics and Chemistry of Nanodevices and Department of Electronics, Peking University, Beijing 100871, China;
2 Department of Electronic Materials Engineering, Research School of Physics and Engineering, The Australian National University, Canberra, ACT 0200, Australia;
3 Institute of Electronics Microelectronics and Nanotechnology, CNRS-UMR 8520, Avenue Poincaré, C. S. 60069, 59652 Villeneuve d'Ascq, France |
|
|
Abstract An experimental realization of a ballistic superconductor proximitized semiconductor nanowire device is a necessary step towards engineering topological quantum electronics. Here, we report on ballistic transport in InSb nanowires grown by molecular-beam epitaxy contacted by superconductor electrodes. At an elevated temperature, clear conductance plateaus are observed at zero magnetic field and in agreement with calculations based on the Landauer formula. At lower temperature, we have observed characteristic Fabry-Pérot patterns which confirm the ballistic nature of charge transport. Furthermore, the magnetoconductance measurements in the ballistic regime reveal a periodic variation related to the Fabry-Pérot oscillations. The result can be reasonably explained by taking into account the impact of magnetic field on the phase of ballistic electron's wave function, which is further verified by our simulation. Our results pave the way for better understanding of the quantum interference effects on the transport properties of InSb nanowires in the ballistic regime as well as developing of novel device for topological quantum computations.
|
Received: 13 December 2016
Revised: 19 December 2016
Accepted manuscript online:
|
PACS:
|
73.23.-b
|
(Electronic transport in mesoscopic systems)
|
|
73.23.Ad
|
(Ballistic transport)
|
|
73.63.-b
|
(Electronic transport in nanoscale materials and structures)
|
|
73.63.Nm
|
(Quantum wires)
|
|
Fund: Project supported by the National Key Basic Research and Development Project of the Ministry of Science and Technology of China (Grant No. 2016YFA0300601) and the National Natural Science Foundation of China (Grant Nos. 91221202, 91421303, 11374019, and 61321001). |
Corresponding Authors:
Ning Kang, Hong-Qi Xu
E-mail: nkang@pku.edu.cn;hqxu@pku.edu.cn
|
Cite this article:
Sen Li(李森), Guang-Yao Huang(黄光耀), Jing-Kun Guo(郭景琨), Ning Kang(康宁), Philippe Caroff, Hong-Qi Xu(徐洪起) Ballistic transport and quantum interference in InSb nanowire devices 2017 Chin. Phys. B 26 027305
|
[1] |
Del Alamo J A 2011 Nature 479 317
|
[2] |
Nilsson H, Deng M T, Caroff P, Thelander C, Samuelson L, Wernersson L E and Xu H Q 2011 IEEE J. Sel. Top. Quantum Electron. 17 907
|
[3] |
Pribiag V, Nadj-Perge S, Frolov S, van den Berg J, van Weperen I, Plissard S, Bakkers E and Kouwenhoven L P 2013 Nat. Nanotechnol. 8 170
|
[4] |
Frolov S M, Plissard S R, Nadj-Perge S, Kouwenhoven L P and Bakkers E P A M 2013 MRS Bulletin 38 809
|
[5] |
Nadj-Perge S, Pribiag V S, van den Berg J W, Zuo K, Plissard S R, Bakkers E P, Frolov S M and Kouwenhoven L P 2012 Phys. Rev. Lett. 108 166801
|
[6] |
van Weperen I, Tarasinski B, Eeltink D, Pribiag V S, Plissard S R, Bakkers E, Kouwenhoven L P and Wimmer M 2015 Phys. Rev. B 91 1413
|
[7] |
Stephens A, Seiler D, Sybert J and Mackey H 1975 Phys. Rev. B 11 4999
|
[8] |
Nilsson H A, Caroff P, Thelander C, Larsson M, Wagner J B, Wernersson L E, Samuelson L and Xu H Q 2009 Nano Lett. 9 3151
|
[9] |
Fan D, Li S, Kang N, Caroff P, Wang L B, Huang Y Q, Deng M T, Yu C L and Xu H Q 2015 Nanoscale 7 14828
|
[10] |
Lutchyn R M, Sau J D and Das Sarma S 2010 Phys. Rev. Lett. 105 077001
|
[11] |
Oreg Y, Refael G and von Oppen F 2010 Phys. Rev. Lett. 105 177002
|
[12] |
Mourik V, Zuo K, Frolov S M, Plissard S R, Bakkers E P A M and Kouwenhoven L P 2012 Science 336 1003
|
[13] |
Deng M T, Yu C L, Huang G Y, Larsson M, Caroff P and Xu H Q 2012 Nano Lett. 12 6414
|
[14] |
van Wees B J, Kouwenhoven L P, Willems E M M, Harmans C J P M, Mooij J E, van Houten H, Beenakker C W J, Williamson J G and Foxon C T 1991 Phys. Rev. B 43 12431
|
[15] |
Wharam D, Thornton T, Newbury R, Pepper M, Ahmed H, Frost J, Hasko D, Peacock D, Ritchie D and Jones G 1988 J. Phys. C: Solid State Phys. 21 L209
|
[16] |
Liang W J, Bockrath M, Bozovic D, Hafner J H, Tinkham M and Park H 2001 Nature 411 665
|
[17] |
Javey A, Guo J, Wang Q, Lundstrom M and Dai H 2003 Nature 424 654
|
[18] |
Kretinin A V, Popovitz-Biro R, Mahalu D and Shtrikman H 2010 Nano Lett. 10 3439
|
[19] |
Li S, Kang N, Fan D X, Wang L B, Huang Y Q, Caroff P and Xu H Q 2016 Sci. Rep. 6 24822
|
[20] |
Heedt S, Prost W, Schubert J, Grützmacher D and Schäpers T 2016 Nano Lett. 16 3116
|
[21] |
Kammhuber J, Cassidy M C, Zhang H, Gul O, Pei F, de Moor M W, Nijholt B, Watanabe K, Taniguchi T, Car D, Plissard S R, Bakkers E P and Kouwenhoven L P 2016 Nano Lett. 16 3482
|
[22] |
Hansen A, Björk M, Fasth C, Thelander C and Samuelson L 2005 Phys. Rev. B 71 205328
|
[23] |
Roulleau P, Choi T, Riedi S, Heinzel T, Shorubalko I, Ihn T and Ensslin K 2010 Phys. Rev. B 81 155449
|
[24] |
Wang L B, Guo J K, Kang N, Pan D, Li S, Fan D, Zhao J and Xu H Q 2015 Appl. Phys. Lett. 106 173105
|
[25] |
Vigneau F, Prudkovkiy V, Duchemin I, Escoffier W, Caroff P, Niquet Y M, Leturcq R, Goiran M and Raquet B 2014 Phys. Rev. Lett. 112 076801
|
[26] |
Holloway G W, Shiri D, Haapamaki C M, Willick K, Watson G, LaPierre R R and Baugh J 2015 Phys. Rev. B 91 045422
|
[27] |
Thelander C, Caroff P, Plissard S B and Dick K A 2012 Appl. Phys. Lett. 100 232105
|
[28] |
Xu T, Dick K A, Plissard S, Nguyen T H, Makoudi Y, Berthe M, Nys J P, Wallart X, Grandidier B and Caroff P 2012 Nanotechnology 23 095702
|
[29] |
Liao G, Luo N, Yang Z, Chen K and Xu H Q 2015 J. Appl. Phys. 118 094308
|
[30] |
Chuang S, Gao Q, Kapadia R, Ford A C, Guo J and Javey A 2013 Nano Lett. 13 555
|
[31] |
Bagwell P F and Orlando T P 1989 Phys. Rev. B 40 1456
|
[32] |
Rainis D and Loss D 2014 Phys. Rev. B 90 235415
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|