Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(2): 027305    DOI: 10.1088/1674-1056/26/2/027305
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Ballistic transport and quantum interference in InSb nanowire devices

Sen Li(李森)1, Guang-Yao Huang(黄光耀)1, Jing-Kun Guo(郭景琨)1, Ning Kang(康宁)1, Philippe Caroff2,3, Hong-Qi Xu(徐洪起)1
1 Key Laboratory for the Physics and Chemistry of Nanodevices and Department of Electronics, Peking University, Beijing 100871, China;
2 Department of Electronic Materials Engineering, Research School of Physics and Engineering, The Australian National University, Canberra, ACT 0200, Australia;
3 Institute of Electronics Microelectronics and Nanotechnology, CNRS-UMR 8520, Avenue Poincaré, C. S. 60069, 59652 Villeneuve d'Ascq, France
Abstract  

An experimental realization of a ballistic superconductor proximitized semiconductor nanowire device is a necessary step towards engineering topological quantum electronics. Here, we report on ballistic transport in InSb nanowires grown by molecular-beam epitaxy contacted by superconductor electrodes. At an elevated temperature, clear conductance plateaus are observed at zero magnetic field and in agreement with calculations based on the Landauer formula. At lower temperature, we have observed characteristic Fabry-Pérot patterns which confirm the ballistic nature of charge transport. Furthermore, the magnetoconductance measurements in the ballistic regime reveal a periodic variation related to the Fabry-Pérot oscillations. The result can be reasonably explained by taking into account the impact of magnetic field on the phase of ballistic electron's wave function, which is further verified by our simulation. Our results pave the way for better understanding of the quantum interference effects on the transport properties of InSb nanowires in the ballistic regime as well as developing of novel device for topological quantum computations.

Keywords:  InSb nanowire      ballistic transport      quantum interference  
Received:  13 December 2016      Revised:  19 December 2016      Accepted manuscript online: 
PACS:  73.23.-b (Electronic transport in mesoscopic systems)  
  73.23.Ad (Ballistic transport)  
  73.63.-b (Electronic transport in nanoscale materials and structures)  
  73.63.Nm (Quantum wires)  
Fund: 

Project supported by the National Key Basic Research and Development Project of the Ministry of Science and Technology of China (Grant No. 2016YFA0300601) and the National Natural Science Foundation of China (Grant Nos. 91221202, 91421303, 11374019, and 61321001).

Corresponding Authors:  Ning Kang, Hong-Qi Xu     E-mail:  nkang@pku.edu.cn;hqxu@pku.edu.cn

Cite this article: 

Sen Li(李森), Guang-Yao Huang(黄光耀), Jing-Kun Guo(郭景琨), Ning Kang(康宁), Philippe Caroff, Hong-Qi Xu(徐洪起) Ballistic transport and quantum interference in InSb nanowire devices 2017 Chin. Phys. B 26 027305

[1] Del Alamo J A 2011 Nature 479 317
[2] Nilsson H, Deng M T, Caroff P, Thelander C, Samuelson L, Wernersson L E and Xu H Q 2011 IEEE J. Sel. Top. Quantum Electron. 17 907
[3] Pribiag V, Nadj-Perge S, Frolov S, van den Berg J, van Weperen I, Plissard S, Bakkers E and Kouwenhoven L P 2013 Nat. Nanotechnol. 8 170
[4] Frolov S M, Plissard S R, Nadj-Perge S, Kouwenhoven L P and Bakkers E P A M 2013 MRS Bulletin 38 809
[5] Nadj-Perge S, Pribiag V S, van den Berg J W, Zuo K, Plissard S R, Bakkers E P, Frolov S M and Kouwenhoven L P 2012 Phys. Rev. Lett. 108 166801
[6] van Weperen I, Tarasinski B, Eeltink D, Pribiag V S, Plissard S R, Bakkers E, Kouwenhoven L P and Wimmer M 2015 Phys. Rev. B 91 1413
[7] Stephens A, Seiler D, Sybert J and Mackey H 1975 Phys. Rev. B 11 4999
[8] Nilsson H A, Caroff P, Thelander C, Larsson M, Wagner J B, Wernersson L E, Samuelson L and Xu H Q 2009 Nano Lett. 9 3151
[9] Fan D, Li S, Kang N, Caroff P, Wang L B, Huang Y Q, Deng M T, Yu C L and Xu H Q 2015 Nanoscale 7 14828
[10] Lutchyn R M, Sau J D and Das Sarma S 2010 Phys. Rev. Lett. 105 077001
[11] Oreg Y, Refael G and von Oppen F 2010 Phys. Rev. Lett. 105 177002
[12] Mourik V, Zuo K, Frolov S M, Plissard S R, Bakkers E P A M and Kouwenhoven L P 2012 Science 336 1003
[13] Deng M T, Yu C L, Huang G Y, Larsson M, Caroff P and Xu H Q 2012 Nano Lett. 12 6414
[14] van Wees B J, Kouwenhoven L P, Willems E M M, Harmans C J P M, Mooij J E, van Houten H, Beenakker C W J, Williamson J G and Foxon C T 1991 Phys. Rev. B 43 12431
[15] Wharam D, Thornton T, Newbury R, Pepper M, Ahmed H, Frost J, Hasko D, Peacock D, Ritchie D and Jones G 1988 J. Phys. C: Solid State Phys. 21 L209
[16] Liang W J, Bockrath M, Bozovic D, Hafner J H, Tinkham M and Park H 2001 Nature 411 665
[17] Javey A, Guo J, Wang Q, Lundstrom M and Dai H 2003 Nature 424 654
[18] Kretinin A V, Popovitz-Biro R, Mahalu D and Shtrikman H 2010 Nano Lett. 10 3439
[19] Li S, Kang N, Fan D X, Wang L B, Huang Y Q, Caroff P and Xu H Q 2016 Sci. Rep. 6 24822
[20] Heedt S, Prost W, Schubert J, Grützmacher D and Schäpers T 2016 Nano Lett. 16 3116
[21] Kammhuber J, Cassidy M C, Zhang H, Gul O, Pei F, de Moor M W, Nijholt B, Watanabe K, Taniguchi T, Car D, Plissard S R, Bakkers E P and Kouwenhoven L P 2016 Nano Lett. 16 3482
[22] Hansen A, Björk M, Fasth C, Thelander C and Samuelson L 2005 Phys. Rev. B 71 205328
[23] Roulleau P, Choi T, Riedi S, Heinzel T, Shorubalko I, Ihn T and Ensslin K 2010 Phys. Rev. B 81 155449
[24] Wang L B, Guo J K, Kang N, Pan D, Li S, Fan D, Zhao J and Xu H Q 2015 Appl. Phys. Lett. 106 173105
[25] Vigneau F, Prudkovkiy V, Duchemin I, Escoffier W, Caroff P, Niquet Y M, Leturcq R, Goiran M and Raquet B 2014 Phys. Rev. Lett. 112 076801
[26] Holloway G W, Shiri D, Haapamaki C M, Willick K, Watson G, LaPierre R R and Baugh J 2015 Phys. Rev. B 91 045422
[27] Thelander C, Caroff P, Plissard S B and Dick K A 2012 Appl. Phys. Lett. 100 232105
[28] Xu T, Dick K A, Plissard S, Nguyen T H, Makoudi Y, Berthe M, Nys J P, Wallart X, Grandidier B and Caroff P 2012 Nanotechnology 23 095702
[29] Liao G, Luo N, Yang Z, Chen K and Xu H Q 2015 J. Appl. Phys. 118 094308
[30] Chuang S, Gao Q, Kapadia R, Ford A C, Guo J and Javey A 2013 Nano Lett. 13 555
[31] Bagwell P F and Orlando T P 1989 Phys. Rev. B 40 1456
[32] Rainis D and Loss D 2014 Phys. Rev. B 90 235415
[1] Multiplexing technology based on SQUID for readout of superconducting transition-edge sensor arrays
Xinyu Wu(吴歆宇), Qing Yu(余晴), Yongcheng He(何永成), Jianshe Liu(刘建设), and Wei Chen(陈炜). Chin. Phys. B, 2022, 31(10): 108501.
[2] Chirp-dependent ionization of hydrogen atoms in the presence of super-intense laser pulses
Fengzheng Zhu(朱风筝), Xiaoyu Liu(刘晓煜), Yue Guo(郭月), Ningyue Wang(王宁月), Liguang Jiao(焦利光), and Aihua Liu(刘爱华). Chin. Phys. B, 2021, 30(9): 094209.
[3] Stable quantum interference enabled by coexisting detuned and resonant STIRAPs
Dan Liu(刘丹), Yichun Gao(高益淳), Jianqin Xu(许建琴), and Jing Qian(钱静). Chin. Phys. B, 2021, 30(5): 053701.
[4] Absorption interferometer of two-sided cavity
Miao-Di Guo(郭苗迪) and Hong-Mei Li(李红梅). Chin. Phys. B, 2021, 30(5): 054202.
[5] Unconventional photon blockade in a three-mode system with double second-order nonlinear coupling
Hong-Yu Lin(林宏宇), Hui Yang(杨慧), and Zhi-Hai Yao(姚治海). Chin. Phys. B, 2020, 29(12): 120304.
[6] Optimization of pick-up coils for weakly damped SQUID gradiometers
Kang Yang(杨康), Jialei Wang(王佳磊), Xiangyan Kong(孔祥燕), Ruihu Yang(杨瑞虎), Hua Chen(陈桦). Chin. Phys. B, 2018, 27(5): 050701.
[7] Performance study of aluminum shielded room for ultra-low-field magnetic resonance imaging based on SQUID: Simulations and experiments
Bo Li(李波), Hui Dong(董慧), Xiao-Lei Huang(黄小磊), Yang Qiu(邱阳), Quan Tao(陶泉), Jian-Ming Zhu(朱建明). Chin. Phys. B, 2018, 27(2): 020701.
[8] Dynamic properties of atomic collective decay in cavity quantum electrodynamics
Yu-Feng Han(韩玉峰), Cheng-Jie Zhu(朱成杰), Xian-Shan Huang(黄仙山), Ya-Ping Yang(羊亚平). Chin. Phys. B, 2018, 27(12): 124206.
[9] Modulation depth of series SQUIDs modified by Josephson junction area
Jie Liu(刘杰), He Gao(高鹤), Gang Li(李刚), Zheng Wei Li(李正伟), Kamal Ahmada, Zhang Ying Shan(张颖珊), Jian She Liu(刘建设), Wei Chen(陈炜). Chin. Phys. B, 2017, 26(9): 098501.
[10] Quantum interference between heralded single photon stateand coherent state
Lei Yang(杨磊), Xiaoxin Ma(马晓欣), Xiaoying Li(李小英). Chin. Phys. B, 2017, 26(7): 074206.
[11] Macroscopic resonant tunneling in an rf-SQUID flux qubit under a single-cycle sinusoidal driving
Jianxin Shi(史建新), Weiwei Xu(许伟伟), Guozhu Sun(孙国柱), Jian Chen(陈健), Lin Kang(康琳), Peiheng Wu(吴培亨). Chin. Phys. B, 2017, 26(4): 047402.
[12] Unified semiclassical approach to electronic transport from diffusive to ballistic regimes
Hao Geng(耿浩), Wei-Yin Deng(邓伟胤), Yue-Jiao Ren(任月皎), Li Sheng(盛利), Ding-Yu Xing(邢定钰). Chin. Phys. B, 2016, 25(9): 097201.
[13] Tunable thermoelectric properties in bended graphene nanoribbons
Chang-Ning Pan(潘长宁), Jun He(何军), Mao-Fa Fang(方卯发). Chin. Phys. B, 2016, 25(7): 078102.
[14] Effects of magnetic field on photon-induced quantum transport in a single dot-cavity system
Nzar Rauf Abdullah, Aziz H Fatah, Jabar M A Fatah. Chin. Phys. B, 2016, 25(11): 114206.
[15] Entanglement and non-Markovianity of a multi-level atom decaying in a cavity
Zi-Long Fan(范子龙), Yu-Kun Ren(任玉坤), Hao-Sheng Zeng(曾浩生). Chin. Phys. B, 2016, 25(1): 010303.
No Suggested Reading articles found!