Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(12): 126101    DOI: 10.1088/1674-1056/26/12/126101
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Structural and size evolution of indium nanoparticles embedded in aluminum synthesized by ion implantation

Yan-Xia Yan(晏艳霞), Meng Liu(刘孟), Mei-Juan Hu(胡梅娟), Hong-Zhi Zhu(朱宏志), Huan Wang(王欢)
Institute of Materials, China Academy of Engineering Physics, Jiangyou 621907, China
Abstract  The structural and the size evolution of embedded In nanoparticles in Al synthesized by ion implantation and subsequent annealing are experimentally investigated. The average radius r of In nanoparticles is determined as a function of annealing time in a temperature range between 423 K and 453 K. The structural transition of In nanoparticles with the crystallographic orientation In (200)[002]||Al (200)[002] is observed to change into In (111)[110]||Al (002)[110] with a critical particle radius between 2.3 nm and 2.6 nm. In addition, the growth of In nanoparticles in the annealing process is evidently governed by the diffusion limited Ostwald ripening. By further analyzing the experimental data, values of diffusion coefficient and activation energy are obtained.
Keywords:  ion implantation      indium nanoparticles      size evolution  
Received:  31 May 2017      Revised:  04 September 2017      Accepted manuscript online: 
PACS:  61.05.cp (X-ray diffraction)  
  61.46.Hk (Nanocrystals)  
  61.72.U- (Doping and impurity implantation)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11505160) and the Director Foundation of Institute of Materials, Chinese Academy of Engineering Physics (Grant No. SJZD201406).
Corresponding Authors:  Huan Wang     E-mail:  wanghuan2001@163.com

Cite this article: 

Yan-Xia Yan(晏艳霞), Meng Liu(刘孟), Mei-Juan Hu(胡梅娟), Hong-Zhi Zhu(朱宏志), Huan Wang(王欢) Structural and size evolution of indium nanoparticles embedded in aluminum synthesized by ion implantation 2017 Chin. Phys. B 26 126101

[1] Ajibade P A and Botha N L 2017 Nanomaterials 7 32
[2] Heinz H, Pramanik C, Heinz Q, Ding Y F, Mishra R K, Marchon D, Flatt F J, Estrela-Lopis I, Llop J, Moya S and Ziolo R F 2017 Surf. Sci. Rep. 72 1
[3] Obaidat I M, Issa B and Haik Y 2015 Nanomaterials 5 63
[4] Pandey R R, Fukumori M, Yousefi A T, Eguchi M, Tanaka D, Ogawa T and Tanaka H 2017 Nanotechnology 28 175704
[5] Kosinova A, Wang D, Baradács E, Parditka B, Kups T, Klinger L, Erdélyi Z, Schaaf P and Rabkin E 2017 Acta Materialia 127 108
[6] Bose S and Ayyub P 2014 Rep. Prog. Phys. 77 116503
[7] Li W H, Wang C W, Li C Y, Hsu C K, Yang C C and Wu C M 2008 Phys. Rev. B 77 094508
[8] Kittel C 2004 Introduction to Solid State Physics (New York:John Wiley & Sons Ltd)
[9] Hong Y, Ding S, Wu W, Hu J, Voevodin A A, Gschwender L, Snyder Ed, Chow L and Su M 2010 ACS Appl. Mater. Interface 2 1685
[10] Ho W J, Lee Y Y, Hu C H and Wang W L 2016 Opt. Express 24 17900-9
[11] Wu F Y, Yang C C, Wu C M, Wang C W and Li W H 2007 J. Appl. Phys. 101 09G111
[12] Cingarapu S, Yang Z, Sorensen C and Klabunde K 2011 Inorg. Chem. 50 5000
[13] Dybkjír G, Kruse N, Johansen A, Johnson E, Sarholt-Kristensen L and Bourdelle K K 1996 Surface and Coatings Technology 83 82
[14] Li W H, Yang C C, Tsao F C, Wu S Y, Huang P J, Chung M K and Yao Y D 2005 Phys. Rev. B 72 214516
[15] Wang H and Zhu H Z 2015 Nanoscale Res. Lett. 10 487
[16] Xu R, Jia G Y and Liu C L 2014 Acta Phys. Sin. 63 078501(in Chinese)
[17] Yu Y, Guo M, Yuan M W, Liu W T and Hu J B 2016 Biosensors and Bioelectronics 77 215
[18] Wang J X, Li J H, Qian S, Guo G Y, Wang Q J, Tang J, Shen H, Liu X Y, Zhang X L and Chu P 2016 ACS Appl. Mater. Interfaces 8 11162
[19] Ziegler J F, Biersack J P and Littmark U 1985 The Stopping and Ranges of Ions in Solids (New York:Pergamon)
[20] Johnson E, Hjemsted K, Schmidt B, Bourdelle K K, Johansen A, Anderson H H and Sarholt-Kristensen L 1992 Mat. Res. Soc. Symp. Proc. 235 485
[21] Kemerink G J and Pleiter F 1985 Scripta Metallurgica 19 881
[22] Lai S L, Carlsson J R A and Allen L H 1998 Appl. Phys. Lett. 72 1098
[23] Martine J M and Doherty R D 1976 Stability of Microstructure in Metallic Systems (London:Cambridge University Press)
[24] Ardell A J 1972 Acta Metall. 20 61
[25] Zhang D L and Cantor B 1990 Philosophical Magazine A 62 557
[26] Murray J L 1983 Bulletin of Alloy Phase Diagrams 4 271
[27] Peterson N L and Rothman S J 1970 Phys. Rev. B 1 3264
[28] Alexander W B and Slifkin L M 1970 Phys. Rev. B 1 3274
[29] Anand M S, Murarka S P and Agarwala R P 1965 J. Appl. Phys. 36 3860
[30] Hood G M and Schultz R J 1971 Phys. Rev. B 4 2339
[31] Fradin F Y and Rowland T J 1967 Appl. Phys. Lett. 11 207
[32] Lundy T S and Murdock J F 1962 J. Appl. Phys. 33 1671
[1] Surface defects, stress evolution, and laser damage enhancement mechanism of fused silica under oxygen-enriched condition
Wei-Yuan Luo(罗韦媛), Wen-Feng Sun(孙文丰), Bo Li(黎波), Xia Xiang(向霞), Xiao-Long Jiang(蒋晓龙),Wei Liao(廖威), Hai-Jun Wang(王海军), Xiao-Dong Yuan(袁晓东),Xiao-Dong Jiang(蒋晓东), and Xiao-Tao Zu(祖小涛). Chin. Phys. B, 2022, 31(5): 054214.
[2] Surface chemical disorder and lattice strain of GaN implanted by 3-MeV Fe10+ ions
Jun-Yuan Yang(杨浚源), Zong-Kai Feng(冯棕楷), Ling Jiang(蒋领), Jie Song(宋杰), Xiao-Xun He(何晓珣), Li-Ming Chen(陈黎明), Qing Liao(廖庆), Jiao Wang(王姣), and Bing-Sheng Li(李炳生). Chin. Phys. B, 2022, 31(4): 046103.
[3] Differential nonlinear photocarrier radiometry for characterizing ultra-low energy boron implantation in silicon
Xiao-Ke Lei(雷晓轲), Bin-Cheng Li(李斌成), Qi-Ming Sun(孙启明), Jing Wang(王静), Chun-Ming Gao(高椿明), and Ya-Fei Wang(王亚非). Chin. Phys. B, 2022, 31(3): 038102.
[4] Optical properties of He+-implanted and diamond blade-diced terbium gallium garnet crystal planar and ridge waveguides
Jia-Li You(游佳丽), Yu-Song Wang(王雨松), Tong Wang(王彤), Li-Li Fu(付丽丽), Qing-Yang Yue(岳庆炀), Xiang-Fu Wang(王祥夫), Rui-Lin Zheng(郑锐林), and Chun-Xiao Liu(刘春晓). Chin. Phys. B, 2022, 31(11): 114203.
[5] Mechanism of defect evolution in H+ and He+ implanted InP
Ren-Jie Liu(刘仁杰), Jia-Jie Lin(林家杰), N Daghbouj, Jia-Liang Sun(孙嘉良), Tian-Gui You(游天桂), Peng Gao(高鹏), Nie-Feng Sun(孙聂枫), and Min Liao(廖敏). Chin. Phys. B, 2021, 30(8): 086104.
[6] Formation of nano-twinned 3C-SiC grains in Fe-implanted 6H-SiC after 1500-℃ annealing
Zheng Han(韩铮), Xu Wang(王旭), Jiao Wang(王娇), Qing Liao(廖庆), and Bingsheng Li(李炳生). Chin. Phys. B, 2021, 30(8): 086107.
[7] Structure and luminescence of a-plane GaN on r-plane sapphire substrate modified by Si implantation
Lijie Huang(黄黎杰), Lin Li(李琳), Zhen Shang(尚震), Mao Wang(王茂), Junjie Kang(康俊杰), Wei Luo(罗巍), Zhiwen Liang(梁智文), Slawomir Prucnal, Ulrich Kentsch, Yanda Ji(吉彦达), Fabi Zhang(张法碧), Qi Wang(王琦), Ye Yuan(袁冶), Qian Sun(孙钱), Shengqiang Zhou(周生强), and Xinqiang Wang(王新强). Chin. Phys. B, 2021, 30(5): 056104.
[8] Cathodic shift of onset potential on TiO2 nanorod arrays with significantly enhanced visible light photoactivity via nitrogen/cobalt co-implantation
Xianyin Song(宋先印), Hongtao Zhou(周洪涛), and Changzhong Jiang(蒋昌忠). Chin. Phys. B, 2021, 30(5): 058505.
[9] Oxygen vacancies and V co-doped Co3O4 prepared by ion implantation boosts oxygen evolution catalysis
Bo Sun(孙博), Dong He(贺栋), Hongbo Wang(王宏博), Jiangchao Liu(刘江超), Zunjian Ke(柯尊健), Li Cheng(程莉), and Xiangheng Xiao(肖湘衡). Chin. Phys. B, 2021, 30(10): 106102.
[10] Determination of activation energy of ion-implanted deuterium release from W-Y2O3
Xue-Feng Wang(王雪峰), Ji-Liang Wu(吴吉良), Qiang Li(李强), Rui-Zhu Yang(杨蕊竹), Zhan-Lei Wang(王占雷), Chang-An Chen(陈长安), Chun-Rong Feng(冯春蓉), Yong-Chu Rao(饶咏初), Xiao-Hong Chen(谌晓洪), Xiao-Qiu Ye(叶小球). Chin. Phys. B, 2020, 29(6): 065205.
[11] Influence of N+ implantation on structure, morphology, and corrosion behavior of Al in NaCl solution
Hadi Savaloni, Rezvan Karami, Helma Sadat Bahari, Fateme Abdi. Chin. Phys. B, 2020, 29(5): 058102.
[12] Fabrication and characterization of vertical GaN Schottky barrier diodes with boron-implanted termination
Wei-Fan Wang(王伟凡), Jian-Feng Wang(王建峰), Yu-Min Zhang(张育民), Teng-Kun Li(李腾坤), Rui Xiong(熊瑞), Ke Xu(徐科). Chin. Phys. B, 2020, 29(4): 047305.
[13] Experimental and computational study of visible light-induced photocatalytic ability of nitrogen ions-implanted TiO2 nanotubes
Ruijing Zhang(张瑞菁), Xiaoli Liu(刘晓丽), Xinggang Hou(侯兴刚), Bin Liao(廖斌). Chin. Phys. B, 2020, 29(4): 048501.
[14] Structural and electrical properties of carbon-ion-implanted ultrananocrystalline diamond films
Hui Xu(徐辉), Jian-Jun Liu(刘建军), Hai-Tao Ye(叶海涛), D J Coathup, A V Khomich, Xiao-Jun Hu(胡晓君). Chin. Phys. B, 2018, 27(9): 096104.
[15] Guiding properties of proton-implanted Nd3+-doped phosphate glass waveguides
Qi-Feng Zhu(朱其峰), Yue Wang(王玥), Jian-Ping Shen(沈建平), Hai-Tao Guo(郭海涛), Chun-Xiao Liu(刘春晓). Chin. Phys. B, 2018, 27(5): 054218.
No Suggested Reading articles found!