ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Guiding properties of proton-implanted Nd3+-doped phosphate glass waveguides |
Qi-Feng Zhu(朱其峰)1, Yue Wang(王玥)1, Jian-Ping Shen(沈建平)1, Hai-Tao Guo(郭海涛)2, Chun-Xiao Liu(刘春晓)1 |
1 College of Electronic and Optical Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, China; 2 State Key Laboratory of Transient Optics and Photonics, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences(CAS), Xi'an 710119, China |
|
|
Abstract We report on the fabrication and properties of an optical waveguide in Nd3+-doped phosphate glass. The planar waveguide was obtained by 550-keV proton implantation with a dose of 8.0×1016 ions/cm2. The proton-glass interaction was simulated by the stopping and range of ions in matter (SRIM software). The characteristics of the waveguide including the refractive index profile and the near-field intensity distribution were studied by the reflectivity calculation method and the end-face coupling technique. The optical waveguide demonstrated multi-mode behavior at the wavelength of 632.8 nm. The propagation features of the proton-implanted Nd3+-doped phosphate glass waveguide shows its potential to operate as an integrated photonic device.
|
Received: 15 November 2017
Revised: 26 December 2017
Accepted manuscript online:
|
PACS:
|
42.79.Gn
|
(Optical waveguides and couplers)
|
|
61.80.Jh
|
(Ion radiation effects)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos.11405041 and 61475189) and NUPTSF,China (Grant Nos.NY214159,NY215007,and NY215113). |
Corresponding Authors:
Chun-Xiao Liu
E-mail: cxliu0816@sina.com
|
Cite this article:
Qi-Feng Zhu(朱其峰), Yue Wang(王玥), Jian-Ping Shen(沈建平), Hai-Tao Guo(郭海涛), Chun-Xiao Liu(刘春晓) Guiding properties of proton-implanted Nd3+-doped phosphate glass waveguides 2018 Chin. Phys. B 27 054218
|
[12] |
Chen F 2012 Laser Photon. Rev. 6 622
|
[1] |
Ríos C, Stegmaier M, Hosseini1 P, Wang D, Scherer T, Wright C D, Bhaskaran H and Pernice W H P 2015 Nat. Photon. 9 725
|
[13] |
Jaque D and Chen F 2009 Appl. Phys. Lett. 94 011109
|
[2] |
Bradley J D B and Pollnau M 2011 Laser Photon. Rev. 5 368
|
[14] |
Bányász I, Zolnai Z, Fried M, Berneschi S, Pelli S and Nunzi-Conti G 2014 Nucl. Instrum. Methods Phys. Res. B 326 81
|
[3] |
Yashar A B, Ilan H and Agranat A J 2015 Appl. Phys. A 118 403
|
[15] |
Vázquez G V, Valiente R, Gómez-Salces S, Flores-Romero E, Rickards J and Trejo-Luna R 2016 Opt. Laser Technol. 79 132
|
[4] |
Okhrimchuk A, Mezentsev V and Lichkova N 2017 Opt. Laser Technol. 92 80
|
[16] |
Liu T, Huang Q, Zhao J H, Kong W J, Liu P, Zhang L, Zhou Y F, Yu X F, Wang L and Wang X L 2015 Chin. Phys. B 24 056102
|
[5] |
Hu H, Ricken R and Sohler W 2010 Appl. Phys. B 98 677
|
[17] |
Chen F 2008 Crit. Rev. Solid State 33 165
|
[6] |
Tan Y, Chen F, Wang L and Jiao Y 2007 Nucl. Instrum. Methods Phys. Res. B 260 567
|
[18] |
Liu C X, Li W N, Wei W and Peng B 2012 Chin. Phys. B 21 074211
|
[7] |
Tan Y, Vázquez de Aldana J R and Chen F 2014 Opt. Eng. 53 107109
|
[19] |
Tan Y, Chen F, Wang L, Wang K M and Lu Q M 2008 J. Korean Phys. Soc. 52 S80
|
[8] |
Chen F, Wang X L and Wang K M 2007 Opt. Mater. 29 1523
|
[20] |
Liu C X, Shen X L, Li W N and Wei W 2017 Chin. Phys. B 26 034207
|
[9] |
Qin X F, Chen M, Wang X L, Liang Y and Zhang S M 2010 Chin. Phys. B 19 113403
|
[21] |
Liu C X, Cheng M, Fu L L, Zheng R L, Guo H T, Zhou Z G, Li W N, Lin S B and Wei W 2016 Chin. Phys. B 25 044211
|
[10] |
Wang X L, Chen F, Wang K M, Lu Q M, Shen D Y and Nie R 2004 Appl. Phys. Lett. 85 1457
|
[22] |
Tan Y, Zhang C, Chen F, Liu F Q, Jaque D and Lu Q M 2011 Appl. Phys. B 103 837
|
[11] |
Wang L, Haunhorst C E, Volk M F, Chen F and Kip D 2015 Opt. Express 23 30188
|
[23] |
Liu C X, Liu T, Liu X H, Wei W and Peng B 2011 Chin. Phys. Lett. 28 114205
|
[12] |
Chen F 2012 Laser Photon. Rev. 6 622
|
[13] |
Jaque D and Chen F 2009 Appl. Phys. Lett. 94 011109
|
[24] |
Liu C X, Xu J, Fu L L, Zheng R L, Zhou Z G, Li W N, Guo H T Lin S B and Wei W 2015 Opt. Eng. 54 067106
|
[14] |
Bányász I, Zolnai Z, Fried M, Berneschi S, Pelli S and Nunzi-Conti G 2014 Nucl. Instrum. Methods Phys. Res. B 326 81
|
[25] |
Wang X L, Wang K M, Fu G, Li S L, Shen D Y, Ma H J and Nie R 2004 Opt. Express 12 4675
|
[26] |
Ziegler J F 2017 SRIM-The Stopping and Range of Ions in Matter, http://www.srim.org
|
[15] |
Vázquez G V, Valiente R, Gómez-Salces S, Flores-Romero E, Rickards J and Trejo-Luna R 2016 Opt. Laser Technol. 79 132
|
[27] |
Chandler P J and Lama F L 1986 Opt. Acta. 33 127
|
[28] |
Rsoft Design Group 2017 Computer Software BeamPROP version 8.0, http://www.rsoftdesign.com
|
[16] |
Liu T, Huang Q, Zhao J H, Kong W J, Liu P, Zhang L, Zhou Y F, Yu X F, Wang L and Wang X L 2015 Chin. Phys. B 24 056102
|
[17] |
Chen F 2008 Crit. Rev. Solid State 33 165
|
[29] |
Ramponi R, Osellame R and Marangoni M 2002 Rev. Sci. Instrum. 73 1117
|
[18] |
Liu C X, Li W N, Wei W and Peng B 2012 Chin. Phys. B 21 074211
|
[19] |
Tan Y, Chen F, Wang L, Wang K M and Lu Q M 2008 J. Korean Phys. Soc. 52 S80
|
[20] |
Liu C X, Shen X L, Li W N and Wei W 2017 Chin. Phys. B 26 034207
|
[21] |
Liu C X, Cheng M, Fu L L, Zheng R L, Guo H T, Zhou Z G, Li W N, Lin S B and Wei W 2016 Chin. Phys. B 25 044211
|
[22] |
Tan Y, Zhang C, Chen F, Liu F Q, Jaque D and Lu Q M 2011 Appl. Phys. B 103 837
|
[23] |
Liu C X, Liu T, Liu X H, Wei W and Peng B 2011 Chin. Phys. Lett. 28 114205
|
[24] |
Liu C X, Xu J, Fu L L, Zheng R L, Zhou Z G, Li W N, Guo H T Lin S B and Wei W 2015 Opt. Eng. 54 067106
|
[25] |
Wang X L, Wang K M, Fu G, Li S L, Shen D Y, Ma H J and Nie R 2004 Opt. Express 12 4675
|
[26] |
Ziegler J F 2017 SRIM-The Stopping and Range of Ions in Matter, http://www.srim.org
|
[27] |
Chandler P J and Lama F L 1986 Opt. Acta. 33 127
|
[28] |
Rsoft Design Group 2017 Computer Software BeamPROP version 8.0, http://www.rsoftdesign.com
|
[29] |
Ramponi R, Osellame R and Marangoni M 2002 Rev. Sci. Instrum. 73 1117
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|