Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(5): 054218    DOI: 10.1088/1674-1056/27/5/054218
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Guiding properties of proton-implanted Nd3+-doped phosphate glass waveguides

Qi-Feng Zhu(朱其峰)1, Yue Wang(王玥)1, Jian-Ping Shen(沈建平)1, Hai-Tao Guo(郭海涛)2, Chun-Xiao Liu(刘春晓)1
1 College of Electronic and Optical Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, China;
2 State Key Laboratory of Transient Optics and Photonics, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences(CAS), Xi'an 710119, China
Abstract  We report on the fabrication and properties of an optical waveguide in Nd3+-doped phosphate glass. The planar waveguide was obtained by 550-keV proton implantation with a dose of 8.0×1016 ions/cm2. The proton-glass interaction was simulated by the stopping and range of ions in matter (SRIM software). The characteristics of the waveguide including the refractive index profile and the near-field intensity distribution were studied by the reflectivity calculation method and the end-face coupling technique. The optical waveguide demonstrated multi-mode behavior at the wavelength of 632.8 nm. The propagation features of the proton-implanted Nd3+-doped phosphate glass waveguide shows its potential to operate as an integrated photonic device.
Keywords:  waveguide      ion implantation      Nd3+-doped phosphate glasses  
Received:  15 November 2017      Revised:  26 December 2017      Accepted manuscript online: 
PACS:  42.79.Gn (Optical waveguides and couplers)  
  61.80.Jh (Ion radiation effects)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos.11405041 and 61475189) and NUPTSF,China (Grant Nos.NY214159,NY215007,and NY215113).
Corresponding Authors:  Chun-Xiao Liu     E-mail:  cxliu0816@sina.com

Cite this article: 

Qi-Feng Zhu(朱其峰), Yue Wang(王玥), Jian-Ping Shen(沈建平), Hai-Tao Guo(郭海涛), Chun-Xiao Liu(刘春晓) Guiding properties of proton-implanted Nd3+-doped phosphate glass waveguides 2018 Chin. Phys. B 27 054218

[12] Chen F 2012 Laser Photon. Rev. 6 622
[1] Ríos C, Stegmaier M, Hosseini1 P, Wang D, Scherer T, Wright C D, Bhaskaran H and Pernice W H P 2015 Nat. Photon. 9 725
[13] Jaque D and Chen F 2009 Appl. Phys. Lett. 94 011109
[2] Bradley J D B and Pollnau M 2011 Laser Photon. Rev. 5 368
[14] Bányász I, Zolnai Z, Fried M, Berneschi S, Pelli S and Nunzi-Conti G 2014 Nucl. Instrum. Methods Phys. Res. B 326 81
[3] Yashar A B, Ilan H and Agranat A J 2015 Appl. Phys. A 118 403
[15] Vázquez G V, Valiente R, Gómez-Salces S, Flores-Romero E, Rickards J and Trejo-Luna R 2016 Opt. Laser Technol. 79 132
[4] Okhrimchuk A, Mezentsev V and Lichkova N 2017 Opt. Laser Technol. 92 80
[16] Liu T, Huang Q, Zhao J H, Kong W J, Liu P, Zhang L, Zhou Y F, Yu X F, Wang L and Wang X L 2015 Chin. Phys. B 24 056102
[5] Hu H, Ricken R and Sohler W 2010 Appl. Phys. B 98 677
[17] Chen F 2008 Crit. Rev. Solid State 33 165
[6] Tan Y, Chen F, Wang L and Jiao Y 2007 Nucl. Instrum. Methods Phys. Res. B 260 567
[18] Liu C X, Li W N, Wei W and Peng B 2012 Chin. Phys. B 21 074211
[7] Tan Y, Vázquez de Aldana J R and Chen F 2014 Opt. Eng. 53 107109
[19] Tan Y, Chen F, Wang L, Wang K M and Lu Q M 2008 J. Korean Phys. Soc. 52 S80
[8] Chen F, Wang X L and Wang K M 2007 Opt. Mater. 29 1523
[20] Liu C X, Shen X L, Li W N and Wei W 2017 Chin. Phys. B 26 034207
[9] Qin X F, Chen M, Wang X L, Liang Y and Zhang S M 2010 Chin. Phys. B 19 113403
[21] Liu C X, Cheng M, Fu L L, Zheng R L, Guo H T, Zhou Z G, Li W N, Lin S B and Wei W 2016 Chin. Phys. B 25 044211
[10] Wang X L, Chen F, Wang K M, Lu Q M, Shen D Y and Nie R 2004 Appl. Phys. Lett. 85 1457
[22] Tan Y, Zhang C, Chen F, Liu F Q, Jaque D and Lu Q M 2011 Appl. Phys. B 103 837
[11] Wang L, Haunhorst C E, Volk M F, Chen F and Kip D 2015 Opt. Express 23 30188
[23] Liu C X, Liu T, Liu X H, Wei W and Peng B 2011 Chin. Phys. Lett. 28 114205
[12] Chen F 2012 Laser Photon. Rev. 6 622
[13] Jaque D and Chen F 2009 Appl. Phys. Lett. 94 011109
[24] Liu C X, Xu J, Fu L L, Zheng R L, Zhou Z G, Li W N, Guo H T Lin S B and Wei W 2015 Opt. Eng. 54 067106
[14] Bányász I, Zolnai Z, Fried M, Berneschi S, Pelli S and Nunzi-Conti G 2014 Nucl. Instrum. Methods Phys. Res. B 326 81
[25] Wang X L, Wang K M, Fu G, Li S L, Shen D Y, Ma H J and Nie R 2004 Opt. Express 12 4675
[26] Ziegler J F 2017 SRIM-The Stopping and Range of Ions in Matter, http://www.srim.org
[15] Vázquez G V, Valiente R, Gómez-Salces S, Flores-Romero E, Rickards J and Trejo-Luna R 2016 Opt. Laser Technol. 79 132
[27] Chandler P J and Lama F L 1986 Opt. Acta. 33 127
[28] Rsoft Design Group 2017 Computer Software BeamPROP version 8.0, http://www.rsoftdesign.com
[16] Liu T, Huang Q, Zhao J H, Kong W J, Liu P, Zhang L, Zhou Y F, Yu X F, Wang L and Wang X L 2015 Chin. Phys. B 24 056102
[17] Chen F 2008 Crit. Rev. Solid State 33 165
[29] Ramponi R, Osellame R and Marangoni M 2002 Rev. Sci. Instrum. 73 1117
[18] Liu C X, Li W N, Wei W and Peng B 2012 Chin. Phys. B 21 074211
[19] Tan Y, Chen F, Wang L, Wang K M and Lu Q M 2008 J. Korean Phys. Soc. 52 S80
[20] Liu C X, Shen X L, Li W N and Wei W 2017 Chin. Phys. B 26 034207
[21] Liu C X, Cheng M, Fu L L, Zheng R L, Guo H T, Zhou Z G, Li W N, Lin S B and Wei W 2016 Chin. Phys. B 25 044211
[22] Tan Y, Zhang C, Chen F, Liu F Q, Jaque D and Lu Q M 2011 Appl. Phys. B 103 837
[23] Liu C X, Liu T, Liu X H, Wei W and Peng B 2011 Chin. Phys. Lett. 28 114205
[24] Liu C X, Xu J, Fu L L, Zheng R L, Zhou Z G, Li W N, Guo H T Lin S B and Wei W 2015 Opt. Eng. 54 067106
[25] Wang X L, Wang K M, Fu G, Li S L, Shen D Y, Ma H J and Nie R 2004 Opt. Express 12 4675
[26] Ziegler J F 2017 SRIM-The Stopping and Range of Ions in Matter, http://www.srim.org
[27] Chandler P J and Lama F L 1986 Opt. Acta. 33 127
[28] Rsoft Design Group 2017 Computer Software BeamPROP version 8.0, http://www.rsoftdesign.com
[29] Ramponi R, Osellame R and Marangoni M 2002 Rev. Sci. Instrum. 73 1117
[1] Non-Markovianity of an atom in a semi-infinite rectangular waveguide
Jing Zeng(曾静), Yaju Song(宋亚菊), Jing Lu(卢竞), and Lan Zhou(周兰). Chin. Phys. B, 2023, 32(3): 030305.
[2] Spontaneous emission of a moving atom in a waveguide of rectangular cross section
Jing Zeng(曾静), Jing Lu(卢竞), and Lan Zhou(周兰). Chin. Phys. B, 2023, 32(2): 020302.
[3] Dual-channel fiber-optic surface plasmon resonance sensor with cascaded coaxial dual-waveguide D-type structure and microsphere structure
Ling-Ling Li(李玲玲), Yong Wei(魏勇), Chun-Lan Liu(刘春兰), Zhuo Ren(任卓), Ai Zhou(周爱), Zhi-Hai Liu(刘志海), and Yu Zhang(张羽). Chin. Phys. B, 2023, 32(2): 020702.
[4] High gain and circularly polarized substrate integrated waveguide cavity antenna array based on metasurface
Hao Bai(白昊), Guang-Ming Wang(王光明), and Xiao-Jun Zou(邹晓鋆). Chin. Phys. B, 2023, 32(1): 014101.
[5] Second harmonic generation from precise diamond blade diced ridge waveguides
Hui Xu(徐慧), Ziqi Li(李子琦), Chi Pang(逄驰), Rang Li(李让), Genglin Li(李庚霖), Sh. Akhmadaliev, Shengqiang Zhou(周生强), Qingming Lu(路庆明), Yuechen Jia(贾曰辰), and Feng Chen(陈峰). Chin. Phys. B, 2022, 31(9): 094209.
[6] Sound-transparent anisotropic media for backscattering-immune wave manipulation
Wei-Wei Kan(阚威威), Qiu-Yu Li(李秋雨), and Lei Pan(潘蕾). Chin. Phys. B, 2022, 31(8): 084302.
[7] Enhancing performance of GaN-based LDs by using GaN/InGaN asymmetric lower waveguide layers
Wen-Jie Wang(王文杰), Ming-Le Liao(廖明乐), Jun Yuan(袁浚), Si-Yuan Luo(罗思源), and Feng Huang(黄锋). Chin. Phys. B, 2022, 31(7): 074206.
[8] Nonreciprocal two-photon transmission and statistics in a chiral waveguide QED system
Lei Wang(王磊), Zhen Yi(伊珍), Li-Hui Sun(孙利辉), and Wen-Ju Gu(谷文举). Chin. Phys. B, 2022, 31(5): 054206.
[9] Surface defects, stress evolution, and laser damage enhancement mechanism of fused silica under oxygen-enriched condition
Wei-Yuan Luo(罗韦媛), Wen-Feng Sun(孙文丰), Bo Li(黎波), Xia Xiang(向霞), Xiao-Long Jiang(蒋晓龙),Wei Liao(廖威), Hai-Jun Wang(王海军), Xiao-Dong Yuan(袁晓东),Xiao-Dong Jiang(蒋晓东), and Xiao-Tao Zu(祖小涛). Chin. Phys. B, 2022, 31(5): 054214.
[10] A multi-frequency circularly polarized metasurface antenna array based on quarter-mode substrate integrated waveguide for sub-6 applications
Hao Bai(白昊), Guang-Ming Wang(王光明), Xiao-Jun Zou(邹晓鋆), Peng Xie(谢鹏), and Yi-Ping Shi(石一平). Chin. Phys. B, 2022, 31(5): 054102.
[11] Creation of multi-frequency terahertz waves by optimized cascaded difference frequency generation
Zhong-Yang Li(李忠洋), Jia Zhao(赵佳), Sheng Yuan(袁胜), Bin-Zhe Jiao(焦彬哲), Pi-Bin Bing(邴丕彬), Hong-Tao Zhang(张红涛), Zhi-Liang Chen(陈治良), Lian Tan(谭联), and Jian-Quan Yao(姚建铨). Chin. Phys. B, 2022, 31(4): 044205.
[12] Surface chemical disorder and lattice strain of GaN implanted by 3-MeV Fe10+ ions
Jun-Yuan Yang(杨浚源), Zong-Kai Feng(冯棕楷), Ling Jiang(蒋领), Jie Song(宋杰), Xiao-Xun He(何晓珣), Li-Ming Chen(陈黎明), Qing Liao(廖庆), Jiao Wang(王姣), and Bing-Sheng Li(李炳生). Chin. Phys. B, 2022, 31(4): 046103.
[13] Mode characteristics of nested eccentric waveguides constructed by two cylindrical nanowires coated with graphene
Ji Liu(刘吉), Lixia Yu(于丽霞), and Wenrui Xue(薛文瑞). Chin. Phys. B, 2022, 31(3): 036803.
[14] Independently tunable dual resonant dip refractive index sensor based on metal—insulator—metal waveguide with Q-shaped resonant cavity
Haowen Chen(陈颢文), Yunping Qi(祁云平), Jinghui Ding(丁京徽), Yujiao Yuan(苑玉娇), Zhenting Tian(田振廷), and Xiangxian Wang(王向贤). Chin. Phys. B, 2022, 31(3): 034211.
[15] Differential nonlinear photocarrier radiometry for characterizing ultra-low energy boron implantation in silicon
Xiao-Ke Lei(雷晓轲), Bin-Cheng Li(李斌成), Qi-Ming Sun(孙启明), Jing Wang(王静), Chun-Ming Gao(高椿明), and Ya-Fei Wang(王亚非). Chin. Phys. B, 2022, 31(3): 038102.
No Suggested Reading articles found!