Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(12): 124216    DOI: 10.1088/1674-1056/26/12/124216
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Ultra-broadband polarization splitter based on graphene layer-filled dual-core photonic crystal fiber

Hui Zou(邹辉), Hui Xiong(熊慧), Yun-Shan Zhang(张云山), Yong Ma(马勇), Jia-Jin Zheng(郑加金)
College of Optoelectronic Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
Abstract  An ultra-broadband polarization splitter based on graphene layer-filled dual-core photonic crystal fiber (GDC-PCF) that can work in a wavelength range from 1120 nm to 1730 nm is proposed in this paper. Through optimizing fiber configuration, the polarization splitter has an extinction ratio of-56.3 dB at 1.55 μm with a fiber length of 4.8 mm. Compared with the photonic crystal fiber reported splitters, to our knowledge, the GDC-PCF splitter with the extinction ratio below-20 dB has a super wide bandwidth of 610 nm. Due to the excellent splitting characteristics, the GDC-PCF will be used in coherent optical communication systems in a wavelength range from infrared to mid-infraed.
Keywords:  polarization splitters      graphene      dual-core photonic crystal fiber  
Received:  20 June 2017      Revised:  24 July 2017      Accepted manuscript online: 
PACS:  42.81.-i (Fiber optics)  
  42.79.Fm (Reflectors, beam splitters, and deflectors)  
  42.68.Mj (Scattering, polarization)  
  63.22.Rc (Phonons in graphene)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61405096 and 61504058), the Introduction of Talent Research and Research Fund of Nanjing University of Posts and Telecommunications, China (Grant No. NY214158), the Open Fund of Laboratory of Solid State Microstructures, Nanjing University, China (Grant No. M28035), and the Open Fund of State Key Laboratory of Transient Optics and Photonics, Chinese Academy of Sciences (Grant No. SKLST201404).
Corresponding Authors:  Hui Zou     E-mail:  zouhui1010@163.com

Cite this article: 

Hui Zou(邹辉), Hui Xiong(熊慧), Yun-Shan Zhang(张云山), Yong Ma(马勇), Jia-Jin Zheng(郑加金) Ultra-broadband polarization splitter based on graphene layer-filled dual-core photonic crystal fiber 2017 Chin. Phys. B 26 124216

[1] Suzuki K, Kubota H, Kawanishi S, TanakaM and Fujita M 2001 Electron. Lett. 37 1399
[2] Kakarantzas G, Ortigosa-Blanch A, Birks T, Russell P S J, Farr L Couny F and Mangan B 2003 Opt. Lett. 28 158
[3] Tajima K, Zhou J, Nakajima, K and Sato K 2004 J. Lightwave Technol. 22 7
[4] Lee B H, Eom J B, Kim J, Moon D S, Paek U C and Yang G H 2002 Opt. Lett. 27 812
[5] Saitoh K, Sato Y and Koshiba M 2003 Opt. Express 11 3188
[6] Ortigosa Blanch A, Knight J, Wadsworth W, Arriaga J, Mangan B, Birks T, Russell and P S J 2000 Opt. Lett. 25 1325
[7] Zhang L and Yang C 2004 IEEE Photon. Technol. Lett. 16 1670
[8] Zhang L and Yang C 2003 Opt. Express 11 1015
[9] Saitoh K, Sato Y and Koshiba M 2004 Opt. Express 12 3940
[10] Peng G, Tjugiarto and T Chu P 1990 Electron. Lett. 26 682
[11] Li J, Wang J, Wang R and Liu Y 2011 Opt. Laser Technol. 43 795
[12] Rosa L, Poli F, Foroni M, Cucinotta A and Selleri S 2006 Opt. Lett. 31 441
[13] Lu W, Lou S, Wang X, Wang L and Feng R 2013 Appl. Opt. 52 449
[14] Lu W, Lou S and Wang X 2013 Appl. Opt. 52 8494
[15] Jiang L, Zheng Y, Hou L, Zheng K, Peng and J Zhao X 2015 Opt. Commun. 50 56
[16] Sun B, Chen M Y, Zhou J and Zhang Y K 2013 Plasmonics 8 1253
[17] Khaleque and Hattori H T 2015 J. Appl. Phys. 118 143101
[18] Wang E L, Jiang H M, Xie K, Chen C and Hu Z J 2016 J. Appl. Phys. 120 114501
[19] Dash J N and Jha R 2014 IEEE Photon. Technol. Lett. 26 1092
[20] Maharana P K, Srivastava T and Jha R 2013 IEEE Photon. Technol. Lett. 25 122
[21] Nair R, Blake P, Grigorenko A, Novoselov K, Booth T, Stauber T, Peres N and Geim A 2008 Science 320 1308
[22] Guan C, Li S, Shen Y, Yuan T, Yang J and Yuan L 2015 J. Lightwave Technol. 33 349
[23] Agrawal G P 2007 Nonlinear Fiber Optics, 4th edn. (Academic Press)
[24] Pospischil A, Humer M, Furchi M M, Bachmann D, Guider R and Fromherz T and Mueller T 2013 Nat. Photon. 7 892
[25] Jiang H, Wang E, Zhang J, Hu L, Mao Q, Li Q and Xie K 2014 Opt. Express 22 30461
[1] Polarization Raman spectra of graphene nanoribbons
Wangwei Xu(许望伟), Shijie Sun(孙诗杰), Muzi Yang(杨慕紫), Zhenliang Hao(郝振亮), Lei Gao(高蕾), Jianchen Lu(卢建臣), Jiasen Zhu(朱嘉森), Jian Chen(陈建), and Jinming Cai(蔡金明). Chin. Phys. B, 2023, 32(4): 046803.
[2] Spin- and valley-polarized Goos-Hänchen-like shift in ferromagnetic mass graphene junction with circularly polarized light
Mei-Rong Liu(刘美荣), Zheng-Fang Liu(刘正方), Ruo-Long Zhang(张若龙), Xian-Bo Xiao(肖贤波), and Qing-Ping Wu(伍清萍). Chin. Phys. B, 2023, 32(3): 037301.
[3] Graphene metasurface-based switchable terahertz half-/quarter-wave plate with a broad bandwidth
Xiaoqing Luo(罗小青), Juan Luo(罗娟), Fangrong Hu(胡放荣), and Guangyuan Li(李光元). Chin. Phys. B, 2023, 32(2): 027801.
[4] Multi-band polarization switch based on magnetic fluid filled dual-core photonic crystal fiber
Lianzhen Zhang(张连震), Xuedian Zhang(张学典), Xiantong Yu(俞宪同), Xuejing Liu(刘学静), Jun Zhou(周军), Min Chang(常敏), Na Yang(杨娜), and Jia Du(杜嘉). Chin. Phys. B, 2023, 32(2): 024205.
[5] Correlated states in alternating twisted bilayer-monolayer-monolayer graphene heterostructure
Ruirui Niu(牛锐锐), Xiangyan Han(韩香岩), Zhuangzhuang Qu(曲壮壮), Zhiyu Wang(王知雨), Zhuoxian Li(李卓贤), Qianling Liu(刘倩伶), Chunrui Han(韩春蕊), and Jianming Lu(路建明). Chin. Phys. B, 2023, 32(1): 017202.
[6] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[7] Precisely controlling the twist angle of epitaxial MoS2/graphene heterostructure by AFM tip manipulation
Jiahao Yuan(袁嘉浩), Mengzhou Liao(廖梦舟), Zhiheng Huang(黄智恒), Jinpeng Tian(田金朋), Yanbang Chu(褚衍邦), Luojun Du(杜罗军), Wei Yang(杨威), Dongxia Shi(时东霞), Rong Yang(杨蓉), and Guangyu Zhang(张广宇). Chin. Phys. B, 2022, 31(8): 087302.
[8] Longitudinal conductivity in ABC-stacked trilayer graphene under irradiating of linearly polarized light
Guo-Bao Zhu(朱国宝), Hui-Min Yang(杨慧敏), and Jie Yang(杨杰). Chin. Phys. B, 2022, 31(8): 088102.
[9] Dual-channel tunable near-infrared absorption enhancement with graphene induced by coupled modes of topological interface states
Zeng-Ping Su(苏增平), Tong-Tong Wei(魏彤彤), and Yue-Ke Wang(王跃科). Chin. Phys. B, 2022, 31(8): 087804.
[10] Recent advances of defect-induced spin and valley polarized states in graphene
Yu Zhang(张钰), Liangguang Jia(贾亮广), Yaoyao Chen(陈瑶瑶), Lin He(何林), and Yeliang Wang(王业亮). Chin. Phys. B, 2022, 31(8): 087301.
[11] Dynamically tunable multiband plasmon-induced transparency effect based on graphene nanoribbon waveguide coupled with rectangle cavities system
Zi-Hao Zhu(朱子豪), Bo-Yun Wang(王波云), Xiang Yan(闫香), Yang Liu(刘洋), Qing-Dong Zeng(曾庆栋), Tao Wang(王涛), and Hua-Qing Yu(余华清). Chin. Phys. B, 2022, 31(8): 084210.
[12] Valley-dependent transport in strain engineering graphene heterojunctions
Fei Wan(万飞), X R Wang(王新茹), L H Liao(廖烈鸿), J Y Zhang(张嘉颜),M N Chen(陈梦南), G H Zhou(周光辉), Z B Siu(萧卓彬), Mansoor B. A. Jalil, and Yuan Li(李源). Chin. Phys. B, 2022, 31(7): 077302.
[13] Photoelectrochemical activity of ZnO:Ag/rGO photo-anodes synthesized by two-steps sol-gel method
D Ben Jemia, M Karyaoui, M A Wederni, A Bardaoui, M V Martinez-Huerta, M Amlouk, and R Chtourou. Chin. Phys. B, 2022, 31(5): 058201.
[14] Thermionic electron emission in the 1D edge-to-edge limit
Tongyao Zhang(张桐耀), Hanwen Wang(王汉文), Xiuxin Xia(夏秀鑫), Chengbing Qin(秦成兵), and Xiaoxi Li(李小茜). Chin. Phys. B, 2022, 31(5): 058504.
[15] Light-modulated electron retroreflection and Klein tunneling in a graphene-based n-p-n junction
Xingfei Zhou(周兴飞), Ziying Wu(吴子瀛), Yuchen Bai(白宇晨), Qicheng Wang(王起程), Zhentao Zhu(朱震涛), Wei Yan(闫巍), and Yafang Xu(许亚芳). Chin. Phys. B, 2022, 31(4): 047301.
No Suggested Reading articles found!