Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(12): 120303    DOI: 10.1088/1674-1056/26/12/120303
GENERAL Prev   Next  

Monogamy relations of quantum entanglement for partially coherently superposed states

Xian Shi(石现)1,2,3
1. Institute of Mathematics, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China;
2. University of Chinese Academy of Sciences, Beijing 100190, China;
3. UTS-AMSS Joint Research Laboratory for Quantum Computation and Quantum Information Processing, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China
Abstract  Monogamy is a fundamental property of multi-partite entangled states. Recently, Kim J S[Phys. Rev. A 93 032331] showed that a partially coherent superposition (PCS) of a generalized W-class state and the vacuum saturates the strong monogamy inequality proposed by Regula B et al.[Phys. Rev. Lett. 113 110501] in terms of squared convex roof extended negativity; and this fact may present that this class of states are good candidates for studying the monogamy of entanglement. Hence in this paper, we will investigate the monogamy relations for the PCS states. We first present some properties of the PCS states that are useful for providing our main theorems. Then we present several monogamy inequalities for the PCS states in terms of some entanglement measures.
Keywords:  monogamy      PCS states      entanglement  
Received:  23 April 2017      Revised:  31 August 2017      Accepted manuscript online: 
PACS:  03.67.Mn (Entanglement measures, witnesses, and other characterizations)  
  03.65.Ud (Entanglement and quantum nonlocality)  
Fund: Project partially supported by the National Key Research and Development Program of China (Grant No. 2016YFB1000902), the National Natural Science Foundation of China (Grant Nos. 61232015, 61472412, and 61621003), the Beijing Science and Technology Project (2016), Tsinghua-Tencent-AMSS-Joint Project (2016), and the Key Laboratory of Mathematics Mechanization Project:Quantum Computing and Quantum Information Processing.
Corresponding Authors:  Xian Shi     E-mail:  shixian01@gmail.com

Cite this article: 

Xian Shi(石现) Monogamy relations of quantum entanglement for partially coherently superposed states 2017 Chin. Phys. B 26 120303

[1] Horodecki R, Horodecki M and Horodecki K 2009 Rev. Mod. Phys. 81 865
[2] Terhal B M 2004 IBM J. Res. Dev. 48 71
[3] Ou Y C and Fan H 2007 Phys. Rev. A 75 062308
[4] Bai Y K and Wang Z D 2008 Phys. Rev. A 77 032313
[5] Jung E, Park D and Son J W 2009 Phys. Rev. A 80 010301
[6] Ren X J and Jiang W 2010 Phys. Rev. A 81 024305
[7] Cornelio M F 2013 Phys. Rev. A 87 032330
[8] Zhu X N and Fei S M 2015 Phys. Rev. A 92 062345
[9] Liu F, Gao F and Wen Q Y 2015 Sci. Rep. 5 16745
[10] Regula B, Di Martino S, Lee S and Adesso G 2014 Phys. Rev. Lett. 113 110501
[11] Ma X S, Dakic B, Naylor W, Zeilinger A and Walther P 2011 Nat. Phys. 7 399
[12] Masanes L 2009 Phys. Rev. Lett. 102 140501
[13] Tomamichel M, Fehr S, Kaniewski J and Wehner S 2013 New J. Phys. 15 103002
[14] Coffman V, Kundu J and Wootters W K 2000 Phys. Rev. A 61 052306
[15] Osborne T J and Verstraete F 2006 Phys. Rev. Lett. 96 220503
[16] Bai Y K, Xu Y F and Wang Z D 2014 Phys. Rev. A 90 062343
[17] Zhu X N and Fei S M 2014 Phys. Rev. A 90 024304
[18] Luo Y, Tian T, Shao L H and Li Y M 2016 Phys. Rev. A 93 062340
[19] Ou Y C 2007 Phys. Rev. A 75 034305
[20] Li J J and Wang Z X 2010 Chin. Phys. B 19 100310
[21] Regula B, Martino S Di, Lee S and Adesso G 2014 Phys. Rev. Lett. 113 110501
[22] Choi J H and Kim J S 2015 Phys. Rev. A 92 042307
[23] Kim J S 2016 Phys. Rev. A 93 032331
[24] Geethaa P J, Yashodammaa K O and Sudha 2015 Chin. Phys. B 24 110302
[25] Zhu X N and Fei S M 2017 Quantum Inform. Process. 16 53
[26] Gour G, Bandyopadhay S and Sanders B C 2007 J. Math. Phys. 48 012108
[27] Hughston L P, Jozsa R and Wootters W K 1993 Phys. Lett. A 183 14
[28] Li Z G, Fei S M, Albeverio S and Li W M 2009 Phys. Rev. A 80 034301
[29] Kim J S 2010 Phys. Rev. A 81 062328
[1] Unified entropy entanglement with tighter constraints on multipartite systems
Qi Sun(孙琪), Tao Li(李陶), Zhi-Xiang Jin(靳志祥), and Deng-Feng Liang(梁登峰). Chin. Phys. B, 2023, 32(3): 030304.
[2] Entanglement and thermalization in the extended Bose-Hubbard model after a quantum quench: A correlation analysis
Xiao-Qiang Su(苏晓强), Zong-Ju Xu(许宗菊), and You-Quan Zhao(赵有权). Chin. Phys. B, 2023, 32(2): 020506.
[3] Transformation relation between coherence and entanglement for two-qubit states
Qing-Yun Zhou(周晴云), Xiao-Gang Fan(范小刚), Fa Zhao(赵发), Dong Wang(王栋), and Liu Ye(叶柳). Chin. Phys. B, 2023, 32(1): 010304.
[4] Characterizing entanglement in non-Hermitian chaotic systems via out-of-time ordered correlators
Kai-Qian Huang(黄恺芊), Wei-Lin Li(李蔚琳), Wen-Lei Zhao(赵文垒), and Zhi Li(李志). Chin. Phys. B, 2022, 31(9): 090301.
[5] Nonreciprocal coupling induced entanglement enhancement in a double-cavity optomechanical system
Yuan-Yuan Liu(刘元元), Zhi-Ming Zhang(张智明), Jun-Hao Liu(刘军浩), Jin-Dong Wang(王金东), and Ya-Fei Yu(於亚飞). Chin. Phys. B, 2022, 31(9): 094203.
[6] Purification in entanglement distribution with deep quantum neural network
Jin Xu(徐瑾), Xiaoguang Chen(陈晓光), Rong Zhang(张蓉), and Hanwei Xiao(肖晗微). Chin. Phys. B, 2022, 31(8): 080304.
[7] Direct measurement of two-qubit phononic entangled states via optomechanical interactions
A-Peng Liu(刘阿鹏), Liu-Yong Cheng(程留永), Qi Guo(郭奇), Shi-Lei Su(苏石磊), Hong-Fu Wang(王洪福), and Shou Zhang(张寿). Chin. Phys. B, 2022, 31(8): 080307.
[8] Robustness of two-qubit and three-qubit states in correlated quantum channels
Zhan-Yun Wang(王展云), Feng-Lin Wu(吴风霖), Zhen-Yu Peng(彭振宇), and Si-Yuan Liu(刘思远). Chin. Phys. B, 2022, 31(7): 070302.
[9] Self-error-rejecting multipartite entanglement purification for electron systems assisted by quantum-dot spins in optical microcavities
Yong-Ting Liu(刘永婷), Yi-Ming Wu(吴一鸣), and Fang-Fang Du(杜芳芳). Chin. Phys. B, 2022, 31(5): 050303.
[10] Effects of colored noise on the dynamics of quantum entanglement of a one-parameter qubit—qutrit system
Odette Melachio Tiokang, Fridolin Nya Tchangnwa, Jaures Diffo Tchinda,Arthur Tsamouo Tsokeng, and Martin Tchoffo. Chin. Phys. B, 2022, 31(5): 050306.
[11] Entanglement spectrum of non-Abelian anyons
Ying-Hai Wu(吴英海). Chin. Phys. B, 2022, 31(3): 037302.
[12] Probabilistic resumable quantum teleportation in high dimensions
Xiang Chen(陈想), Jin-Hua Zhang(张晋华), and Fu-Lin Zhang(张福林). Chin. Phys. B, 2022, 31(3): 030302.
[13] Tetrapartite entanglement measures of generalized GHZ state in the noninertial frames
Qian Dong(董茜), R. Santana Carrillo, Guo-Hua Sun(孙国华), and Shi-Hai Dong(董世海). Chin. Phys. B, 2022, 31(3): 030303.
[14] Channel parameters-independent multi-hop nondestructive teleportation
Hua-Yang Li(李华阳), Yu-Zhen Wei(魏玉震), Yi Ding(丁祎), and Min Jiang(姜敏). Chin. Phys. B, 2022, 31(2): 020302.
[15] Time evolution law of a two-mode squeezed light field passing through twin diffusion channels
Hai-Jun Yu(余海军) and Hong-Yi Fan(范洪义). Chin. Phys. B, 2022, 31(2): 020301.
No Suggested Reading articles found!