Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(12): 120302    DOI: 10.1088/1674-1056/26/12/120302
GENERAL Prev   Next  

Decoy-state reference-frame-independent quantum key distribution with both source errors and statistical fluctuations

Kang Liu(刘康)1,2, Jian Li(李剑)1,3, Jian-Rong Zhu(朱建荣)1,2, Chun-Mei Zhang(张春梅)1,2, Qin Wang(王琴)1,2
1. Institute of Signal Processing Transmission, Nanjing University of Posts and Telecommunications, Nanjing 210003, China;
2. Key Laboratory of Broadband Wireless Communication and Sensor Network Technology of the Ministry of Education, Nanjing University of Posts and Telecommunications, Nanjing 210003, China;
3. Department of Physics, Southeast University, Nanjing 211189, China
Abstract  Reference-frame-independent quantum key distribution (RFI QKD) can generate secret keys without the alignment of reference frames, which is very robust in real-life implementations of QKD systems. However, the performance of decoy-state RFI QKD with both source errors and statistical fluctuations is still missing until now. In this paper, we investigate the performance of decoy-state RFI QKD in practical scenarios with two kinds of light sources, the heralded single photon source (HSPS) and the weak coherent source (WCS), and also give clear comparison results of decoy-state RFI QKD with WCS and HSPS. Simulation results show that the secret key rates of decoy-state RFI QKD with WCS are higher than those with HSPS in short distance range, but the secret key rates of RFI QKD with HSPS outperform those with WCS in long distance range.
Keywords:  quantum key distribution      reference-frame-independent      statistical fluctuations      source errors  
Received:  06 April 2017      Revised:  02 June 2017      Accepted manuscript online: 
PACS:  03.67.Dd (Quantum cryptography and communication security)  
  03.67.Hk (Quantum communication)  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2017YFA0304100), the National Natural Science Foundation of China (Grant Nos. 61475197, 61590932, 11774180, and 61705110), the Natural Science Foundation of the Jiangsu Higher Education Institutions (Grant Nos. 15KJA120002 and 17KJB140016), the Outstanding Youth Project of Jiangsu Province, China (Grant No. BK20150039), the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20170902), and the Science Fund from the Nanjing University of Posts and Telecommunications, China (Grant No. NY217006).
Corresponding Authors:  Chun-Mei Zhang, Chun-Mei Zhang     E-mail:  cmz@njupt.edu.cn;qinw@njupt.edu.cn

Cite this article: 

Kang Liu(刘康), Jian Li(李剑), Jian-Rong Zhu(朱建荣), Chun-Mei Zhang(张春梅), Qin Wang(王琴) Decoy-state reference-frame-independent quantum key distribution with both source errors and statistical fluctuations 2017 Chin. Phys. B 26 120302

[1] Bennett C H, Brassard G 1984 Proceedings of IEEE International Conference on Computers, Systems, and Signal Processing, pp. 175-79
[2] Shor P W and Preskill J 2000 Phys. Rev. Lett. 85 441
[3] Zhao Y, Qi B, Ma X, Lo H K and Qian L 2006 Phys. Rev. Lett. 96 070502
[4] Peng C Z, Zhang J, Yang D, Gao W B, Ma H X, Yin H and Pan J W 2007 Phys. Rev. Lett. 98 010505
[5] Rosenberg D, Harrington J W, Rice P R, Hiskett P A, Peterson C G, Hughes R J and Nordholt J E 2007 Phys. Rev. Lett. 98 010503
[6] Schmitt M T, Weier H, Fürst M, Ursin R, Tiefenbacher F, Scheidl T and Zeilinger A 2007 Phys. Rev. Lett. 98 010504
[7] Zhao Y, Qi B, Ma X, Lo H K and Qian L 2006 Phys. Rev. Lett. 96 070502
[8] Yuan Z L, Sharpe A W and Shields A J 2007 Appl. Phys. Lett. 90 011118
[9] Yin Z Q, Han Z F, Chen W, Xu F X, Wu Q L and Guo G C 2008 Chin. Phys. Lett. 25 3547
[10] Fröhlich B and Yuan Z L 2015 Nat. Photon. 9 781
[11] Wang S, Chen W and Yin Z Q 2014 Opt. Express 22 21739
[12] Wang S, Chen W and Guo J F 2012 Opt. Lett. 37 1008
[13] Li F Y, Wang D, Wang S, Li M, Yin Z Q, Li H W, Chen W and Han Z F 2014 Chin. Phys. B. 23 124201
[14] Zhang Y, Wang S, Yin Z Q, Chen W, Liang W Y, Li H W, Guo G C and Han Z F 2012 Chin. Phys. B 21 100307
[15] He D Y, Wang S and Chen W 2017 Appl. Phys. Lett. 110 111104
[16] Laing A, Scarani V, Rarity J G and O'Brien J L 2010 Phys. Rev. A 82 012304
[17] Wang C, Sun S H, Ma X C, Tang G Z and Liang L M 2015 Phys. Rev. A 92 042319
[18] Yin Z Q, Wang S, Chen W, Li H W, Guo G C and Han Z F 2014 Quantum Inf. Process. 13 1237
[19] Zhang C M, Zhu J R and Wang Q 2017 Phys. Rev. A. 95 032309
[20] Liang W Y, Wang S, Li H W, Yin Z Q, Chen W, Yao Y and Han Z F 2014 Sci. Rep. 4 3617
[21] Wang C, Song X T, Yin Z Q, Wang S, Chen W, Zhang C M, Guo G C and Han Z F 2015 Phys. Rev. Lett. 115 160502
[22] Zhang P, Aungskunsiri K, Martín-López E, Wabnig J, Lobino M, Nock R W and Laing A 2014 Phys. Rev. Lett. 112 130501
[23] Wabnig J, Bitauld D, Li H W, Laing A, O'Brien, J L and Niskanen A O 2013 New J. Phys. 15 073001
[24] Hwang W Y 2003 Phys. Rev. Lett. 91 057901
[25] Wang X B 2005 Phys. Rev. Lett. 94 230503
[26] Lo H K, Ma X and Chen K 2005 Phys. Rev. Lett. 94 230504
[27] Wang Q, Wang X B and Guo G C 2007 Phys. Rev. A 75 012312
[28] Wang Q, Wang X B, Björk G and Karlsson A 2007 Europhys. Lett. 79 40001
[29] Huttner B, Imoto N, Gisin N and Mor T 1995 Phys. Rev. A 51 1863
[30] Brassard G, Lütkenhaus N, Mor T and Sanders B C 2000 Phys. Rev. Lett. 85 1330
[31] Bruss D 1998 Phys. Rev. Lett. 81 3018
[32] Zhou Y H, Yu Z W and Wang X B 2014 Phys. Rev. A 89 052325
[33] Wang X B, Peng C Z and Zhang J 2008 Phys. Rev. A 77 042311
[34] Wang X B, Yang L, Peng C Z and Pan J C 2009 New J. Phys. 11 075006
[35] Wang S, Zhang S L, Li H W, Yin Z Q, Zhao Y B, Chen W, Han Z F and Guo G C 2009 Phys. Rev. A 79 062309
[1] Security of the traditional quantum key distribution protocolswith finite-key lengths
Bao Feng(冯宝), Hai-Dong Huang(黄海东), Yu-Xiang Bian(卞宇翔), Wei Jia(贾玮), Xing-Yu Zhou(周星宇), and Qin Wang(王琴). Chin. Phys. B, 2023, 32(3): 030307.
[2] Performance of phase-matching quantum key distribution based on wavelength division multiplexing technology
Haiqiang Ma(马海强), Yanxin Han(韩雁鑫), Tianqi Dou(窦天琦), and Pengyun Li(李鹏云). Chin. Phys. B, 2023, 32(2): 020304.
[3] Temperature characterizations of silica asymmetric Mach-Zehnder interferometer chip for quantum key distribution
Dan Wu(吴丹), Xiao Li(李骁), Liang-Liang Wang(王亮亮), Jia-Shun Zhang(张家顺), Wei Chen(陈巍), Yue Wang(王玥), Hong-Jie Wang(王红杰), Jian-Guang Li(李建光), Xiao-Jie Yin(尹小杰), Yuan-Da Wu(吴远大), Jun-Ming An(安俊明), and Ze-Guo Song(宋泽国). Chin. Phys. B, 2023, 32(1): 010305.
[4] Improvement of a continuous-variable measurement-device-independent quantum key distribution system via quantum scissors
Lingzhi Kong(孔令志), Weiqi Liu(刘维琪), Fan Jing(荆凡), Zhe-Kun Zhang(张哲坤), Jin Qi(齐锦), and Chen He(贺晨). Chin. Phys. B, 2022, 31(9): 090304.
[5] Practical security analysis of continuous-variable quantum key distribution with an unbalanced heterodyne detector
Lingzhi Kong(孔令志), Weiqi Liu(刘维琪), Fan Jing(荆凡), and Chen He(贺晨). Chin. Phys. B, 2022, 31(7): 070303.
[6] Short-wave infrared continuous-variable quantum key distribution over satellite-to-submarine channels
Qingquan Peng(彭清泉), Qin Liao(廖骎), Hai Zhong(钟海), Junkai Hu(胡峻凯), and Ying Guo(郭迎). Chin. Phys. B, 2022, 31(6): 060306.
[7] Quantum key distribution transmitter chip based on hybrid-integration of silica and lithium niobates
Xiao Li(李骁), Liang-Liang Wang(王亮亮), Jia-shun Zhang(张家顺), Wei Chen(陈巍), Yue Wang(王玥), Dan Wu (吴丹), and Jun-Ming An (安俊明). Chin. Phys. B, 2022, 31(6): 064212.
[8] Phase-matching quantum key distribution with light source monitoring
Wen-Ting Li(李文婷), Le Wang(王乐), Wei Li(李威), and Sheng-Mei Zhao(赵生妹). Chin. Phys. B, 2022, 31(5): 050310.
[9] Parameter estimation of continuous variable quantum key distribution system via artificial neural networks
Hao Luo(罗浩), Yi-Jun Wang(王一军), Wei Ye(叶炜), Hai Zhong(钟海), Yi-Yu Mao(毛宜钰), and Ying Guo(郭迎). Chin. Phys. B, 2022, 31(2): 020306.
[10] Detecting the possibility of a type of photon number splitting attack in decoy-state quantum key distribution
Xiao-Ming Chen(陈小明), Lei Chen(陈雷), and Ya-Long Yan(阎亚龙). Chin. Phys. B, 2022, 31(12): 120304.
[11] Realization of simultaneous balanced multi-outputs for multi-protocols QKD decoding based onsilica-based planar lightwave circuit
Jin You(游金), Yue Wang(王玥), and Jun-Ming An(安俊明). Chin. Phys. B, 2021, 30(8): 080302.
[12] Practical decoy-state BB84 quantum key distribution with quantum memory
Xian-Ke Li(李咸柯), Xiao-Qian Song(宋小谦), Qi-Wei Guo(郭其伟), Xing-Yu Zhou(周星宇), and Qin Wang(王琴). Chin. Phys. B, 2021, 30(6): 060305.
[13] Continuous-variable quantum key distribution based on photon addition operation
Xiao-Ting Chen(陈小婷), Lu-Ping Zhang(张露萍), Shou-Kang Chang(常守康), Huan Zhang(张欢), and Li-Yun Hu(胡利云). Chin. Phys. B, 2021, 30(6): 060304.
[14] Three-party reference frame independent quantum key distribution protocol
Comfort Sekga and Mhlambululi Mafu. Chin. Phys. B, 2021, 30(12): 120301.
[15] Reference-frame-independent quantum key distribution of wavelength division multiplexing with multiple quantum channels
Zhongqi Sun(孙钟齐), Yanxin Han(韩雁鑫), Tianqi Dou(窦天琦), Jipeng Wang(王吉鹏), Zhenhua Li(李振华), Fen Zhou(周芬), Yuqing Huang(黄雨晴), and Haiqiang Ma(马海强). Chin. Phys. B, 2021, 30(11): 110303.
No Suggested Reading articles found!