CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Structural characterization of indium-rich nanoprecipitate in InGaN V-pits formed by annealing |
Junjun Xue(薛俊俊)1,3, Qing Cai(蔡青)2, Baohua Zhang(张保花)2, Mei Ge(葛梅)2, Dunjun Chen(陈敦军)2, Ting Zhi(智婷)1, Jiangwei Chen(陈将伟)1, Lianhui Wang(汪联辉)3, Rong Zhang(张荣)2, Youdou Zheng(郑有炓)2 |
1. School of Electronic Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, China;
2. School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China;
3. Institute of Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing 210023, China |
|
|
Abstract InGaN layers capped with GaN were annealed at 550℃ for 1 hour. During annealing, cracks appeared and dissolved InGaN penetrated through the microcracks into the V-pits to form indium-rich nanoprecipitates. Some precipitates, in-situ annealed under nitrogen ion irradiation by MBE, were confirmed to be cubic GaN on the tops of precipitates, formed by nitriding the pre-existing Ga droplets under nitrogen ions irradiation.
|
Received: 22 April 2017
Revised: 21 August 2017
Accepted manuscript online:
|
PACS:
|
68.37.Hk
|
(Scanning electron microscopy (SEM) (including EBIC))
|
|
68.37.Lp
|
(Transmission electron microscopy (TEM))
|
|
61.46.Hk
|
(Nanocrystals)
|
|
71.55.Eq
|
(III-V semiconductors)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61604080, 61574079, 61634002, and 61474060), Natural Science Foundation of Jiangsu Province, China (Grant No. BK20160883), University Science Research Project of Jiangsu Province, China (Grant Nos. 16KJB140011 and 14KJB510020), and NUPTSF, China (Grant No. NY214154). |
Corresponding Authors:
Dunjun Chen
E-mail: djchen@nju.edu.cn
|
Cite this article:
Junjun Xue(薛俊俊), Qing Cai(蔡青), Baohua Zhang(张保花), Mei Ge(葛梅), Dunjun Chen(陈敦军), Ting Zhi(智婷), Jiangwei Chen(陈将伟), Lianhui Wang(汪联辉), Rong Zhang(张荣), Youdou Zheng(郑有炓) Structural characterization of indium-rich nanoprecipitate in InGaN V-pits formed by annealing 2017 Chin. Phys. B 26 116801
|
[1] |
Tsuji N, Ito Y, Saito Y and Minamino Y 2002 Scripta Mterialia 47 893
|
[2] |
Ray R K, Jonas J J and Hook R E 1994 Int. mater. Rev. 39 129
|
[3] |
Vartuli C B, Pearton S J, Abernathy C R, Mackenzie J D, Lambers E S and Zolper J C 1996 J. Vac. Sci. Technol. B 14 3523
|
[4] |
Hong J, Lee J W, Vartuli C B, Abernathy C R, Mackenzie J D, Donovan S M and Pearton S J 1997 J. Vac. Sci. Technol. A 15 797
|
[5] |
Ju G X, Fuchi S, Tabuchi M and Takeda Y 2013 Jpn. J. Appl. Phys. 52 08JB12
|
[6] |
Ma Q B, Lieten R and Borghs G 2014 J. Mater Sci:Mater. Elec. 25 1197
|
[7] |
Brice H R, Sadler T C, Kapper M J and Oliver R A 2010 J. Cyst. Growth 312 1800
|
[8] |
Xue J J, Chen D J, Liu Y L, Liu B, Lu H, Zhang R and Zheng Y D 2012 IEEE Photonics Tech. Lett. 24 1478
|
[9] |
Serban E A, Persson P O, Poenaru I, Junaid M, Hultman L, Birch J and Hsiao C L 2015 Nanotechnology 26 215602
|
[10] |
Nakamura S, Mukai T, Senoh M and Iwasa N 1992 Jpn. J. Appl. Phys. 31 L139
|
[11] |
Fan Z F, Mohammad S N, Kim W, Aktas O, Botchkarev A E and Morkoc H 1996 Appl. Phys. Lett. 68 1672
|
[12] |
Zhao Y, Zhang J C, Xue J S, Zhou X W, Xu S R and Hao Y 2015 Chin. Phys. B 24 017302
|
[13] |
Xu S R, Zhao Y, Jiang R Y, Jiang T, Ren Z Y, Zhang J C and Hao Y 2017 Chin. Phys. B 26 027801
|
[14] |
Xue J J, Chen D J, Liu B, Lu H, Zhang R, Zheng Y D, Cui B, Wowchak A M, Dabiran A M, Xu K and Zhang J P 2012 Opt. Express 20 8093
|
[15] |
Cao S, Lim C V S, Hinton B and Wu X H 2017 Corrosion Sci. 116 22
|
[16] |
Goto M, Han S Z, Lim S H, Kitamura J, Fujimura T, Ahn J H, Yamamoto T, Kim S and Lee J 2016 Inter. J. Fatigue 87 15
|
[17] |
Menniger J, Jahn U, Brandt O, Yang H and Ploog K 1996 Appl. Phys. Lett. 69 836
|
[18] |
Wang C, As D J, Schottker B, Schikora D and Lischka K 1999 Semicond. Sci. Tech. 14 161
|
[19] |
Yang B, Liu B D, Wang Y J, Zhuang H, Liu Q Y, Yuan F and Jiang X 2015 Nanoscale 7 16237
|
[20] |
Ding Y and Wang Z L 2009 Micron 40 335
|
[21] |
Meng F, Estruga M, Forticaux A, Morin S A, Wu Q, Hu Z and Jin S 2013 ACS Nano 7 11369
|
[22] |
Sandlobes S, Zaefferer S, Schestakow I, Yi S and Gonzalez-Martinez R 2011 Acta Mater. 59 429
|
[23] |
Yang Z, Chisholm M F, Duscher G, Ma X and Pennycook S J 2013 Acta Mater. 61 250
|
[24] |
Wang Y Y, Ozcan A S, Sanborn C, Ludwig K F, Bhattacharyya A, Chandrasekaran R, Moustakas T D, Zhou L and Smith D J 2007 J. Appl. Phys. 102 073522
|
[25] |
Gerlach J W, Ivanov T, Neumann L, Hoche T, Hirsch D and Rauschenbach B 2012 J. Appl. Phys. 111 113521
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|