Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(11): 116402    DOI: 10.1088/1674-1056/ac744a
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Effects of B segregation on Mo-rich phase precipitation in S31254 super-austenitic stainless steels: Experimental and first-principles study

Pan-Pan Xu(徐攀攀)1, Jin-Yao Ma(马晋遥)1,2,†, Zhou-Hua Jiang(姜周华)4, Yi Zhang(张翊)1, Chao-Xiong Liang(梁超雄)1, Nan Dong(董楠)1, and Pei-De Han(韩培德)1,‡
1 College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China;
2 Instrumental Analysis Center, Taiyuan University of Technology, Taiyuan 030024, China;
3 Taiyuan Iron and Steel(Group) Company Ltd, Taiyuan 030024, China;
4 School of Metallurgy, Northeastern University, Shenyang 110167, China
Abstract  Precipitation in super-austenitic stainless steels will significantly affect their corrosion resistance and hot workability. The effects of Cr and Mo on precipitation behaviors were mainly achieved by affecting the driving force for precipitation, especially Mo has a more substantial promotion effect on the formation of the σ phase than Cr. In the present study, B addition to the S31254 super-austenitic stainless steels shows an excellent ability to inhibit precipitation. The effect of B on the precipitation behaviors was investigated by microstructure characterization and theoretical calculations. The experimental observation shows that the small addition of B inhibits the formation of the σ phase along grain boundaries and changes from continuous to intermittent distribution. Moreover, the inhibitory effect increased obviously with the increase of B content. The influence of B addition was theoretically analyzed from the atomic level, and the calculation results demonstrate that B can inhibit the formation of σ phase precipitates by suppressing Mo migration to grain boundaries. It is found that B and Mo are inclined to segregate at Σ 5 and Σ 9 grain boundaries, with B showing the most severe grain boundary segregation tendency. While B distribution at the grain boundary before precipitation begins, the segregation of Mo and Cr will be restrained. Additionally, B's occupation will induce a high potential barrier, making it difficult for Mo to diffuse towards grain boundaries.
Keywords:  super-austenitic stainless steel      precipitate      segregation      boron  
Received:  28 February 2022      Revised:  26 May 2022      Accepted manuscript online:  29 May 2022
PACS:  64.75.Op (Phase separation and segregation in alloying)  
  68.35.bd (Metals and alloys)  
  73.20.-r (Electron states at surfaces and interfaces)  
  63.20.dk (First-principles theory)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. U1860204 and 51871159).
Corresponding Authors:  Jin-Yao Ma, Pei-De Han     E-mail:  majinyao@tyut.edu.cn;hanpeide@tyut.edu.cn

Cite this article: 

Pan-Pan Xu(徐攀攀), Jin-Yao Ma(马晋遥), Zhou-Hua Jiang(姜周华), Yi Zhang(张翊), Chao-Xiong Liang(梁超雄), Nan Dong(董楠), and Pei-De Han(韩培德) Effects of B segregation on Mo-rich phase precipitation in S31254 super-austenitic stainless steels: Experimental and first-principles study 2022 Chin. Phys. B 31 116402

[1] Sathiya P, Mishra M K and Shanmugarajan B 2012 Mater. Design 33 203
[2] Zambon A, Ferro P and Bonollo F 2006 Mater. Sci. Eng. A 424 117
[3] Bonollo F, Tiziani A, Tovo R, et al. 2004 Weld. Int. 18 24
[4] Mishin Y, Asta M and Li J 2010 Acta Mater. 58 1117
[5] Gibson M A and Schuh C A 2015 Acta Mater. 95 145
[6] Lee C, Roh S, Lee C, et al. 2018 Mater. Chem. Phys. 207 91
[7] Hao Y, Cao G, Li C, et al. 2019 Mater. Charact. 147 21
[8] Zhang S, Jiang Z, Li H, et al. 2018 Mater. Charact. 137 244
[9] Wang J, Cui Y, Bai J, et al. 2019 Mater. Lett. 252 60
[10] Zhang S, Li H, Jiang Z, et al. 2019 Corros. Sci. 163 108295
[11] Uggowitzer P J, Magdowski R and Speidel M O 1996 ISIJ Int. 36 901
[12] Simmons J W 1996 Mater. Sci. Eng. A 207 159
[13] Speidel H J C and Speidel M O 2004 Mater. Manuf. Process. 19 95
[14] Wang Q, Wang L, Zhang W, et al. 2020 Metall. Mater. Trans. B 51 1773
[15] Wang Q, Wang L, Sun Y, et al. 2020 J. Alloys Compd. 815 152418
[16] Yu J, Zhang S, Li H, et al. 2022 J. Mater. Sci. Technol. 112 184
[17] Kurban M, Erb U and Aust K T 2006 Scripta Mater. 54 1053
[18] Faulkner R G 1987 Acta Metall. 35 2905
[19] He X L, Chu Y Y and Jonas J J 1989 Acta Metall. 37 147
[20] Karlsson L and Norden H 1988 Acta Metall. 36 13
[21] Asahi H 2002 ISIJ Inter. 42 1150
[22] Takahashi J, Ishikawa K, Kawakami K, et al. 2017 Acta Mater. 133 41
[23] Lej?ek P, ?ob M and Paidar V 2017 Prog. Mater. Sci. 87 83
[24] Razumovskiy V I, Lozovoi A Y and Razumovskii I M 2015 Acta Mater. 82 369
[25] Kohn W and Sham L J 1965 Phys. Rev. B 140 A1133
[26] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[27] Bl?chl P E 1994 Phys. Rev. B 50 17953
[28] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[29] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[30] Pack J D and Monkhorst H J 1977 Phys. Rev. B 16 1748
[31] Li Y, Han C, Zhang C, et al. 2016 Comp. Mater. Sci. 115 170
[32] H?glund J, Guillermet A F, Grimvall G, et al. 1993 Phys. Rev. B 48 11685
[33] Jiang D E and Carter E A 2003 Phys. Rev. B 67 214103
[34] Wu X, You Y W, Kong X S, et al. 2016 Acta Mater. 120 315
[35] Yang Y, Ding J, Zhang P, et al. 2019 Nucl. Instrum. Method B 456 7
[36] Zhang B, Li Y H, Zhou H B, et al. 2020 J. Nucl. Mater. 528 151867
[37] Zhang S, Kontsevoi O Y, Freeman A J, et al. 2011 Acta Mater. 59 6155
[38] Rice J R and Wang J S 1989 Mater. Sci. Eng. A-Struct 107 23
[39] Warrington D H 1975 J. Phys. Colloq. 36 C4-87
[40] Sutton A P and Balluffi R W 1995 Interfaces in crystalline materials (New York: Oxford University Press) p. 414
[41] Guan X J, Shi F, Jia Z P, et al. 2020 Mater. Charact. 170 110689
[42] Zhou Q, Wang R, Zheng Z, et al. 2018 Appl. Surf. Sci. 462 804
[43] Nai Q L, Zheng W J, Song Z G, et al. 2013 J. Iron Steel Res. 25 53
[44] Wang J, Cui Y, Bai J, et al. 2019 J. Electrochem. Soc. 166 C600
[1] Atomic-scale insights of indium segregation and its suppression by GaAs insertion layer in InGaAs/AlGaAs multiple quantum wells
Shu-Fang Ma(马淑芳), Lei Li(李磊), Qing-Bo Kong(孔庆波), Yang Xu(徐阳), Qing-Ming Liu(刘青明), Shuai Zhang(张帅), Xi-Shu Zhang(张西数), Bin Han(韩斌), Bo-Cang Qiu(仇伯仓), Bing-She Xu(许并社), and Xiao-Dong Hao(郝晓东). Chin. Phys. B, 2023, 32(3): 037801.
[2] Suppression and compensation effect of oxygen on the behavior of heavily boron-doped diamond films
Li-Cai Hao(郝礼才), Zi-Ang Chen(陈子昂), Dong-Yang Liu(刘东阳), Wei-Kang Zhao(赵伟康),Ming Zhang(张鸣), Kun Tang(汤琨), Shun-Ming Zhu(朱顺明), Jian-Dong Ye(叶建东),Rong Zhang(张荣), You-Dou Zheng(郑有炓), and Shu-Lin Gu(顾书林). Chin. Phys. B, 2023, 32(3): 038101.
[3] Determination of band alignment between GaOx and boron doped diamond for a selective-area-doped termination structure
Qi-Liang Wang(王启亮), Shi-Yang Fu(付诗洋), Si-Han He(何思翰), Hai-Bo Zhang(张海波),Shao-Heng Cheng(成绍恒), Liu-An Li(李柳暗), and Hong-Dong Li(李红东). Chin. Phys. B, 2022, 31(8): 088104.
[4] Boron at tera-Pascal pressures
Peiju Hu(胡佩菊), Junhao Peng(彭俊豪), Xing Xie(谢兴), Minru Wen(文敏儒),Xin Zhang(张欣), Fugen Wu(吴福根), and Huafeng Dong(董华锋). Chin. Phys. B, 2022, 31(3): 036301.
[5] First-principles study of two new boron nitride structures: C12-BN and O16-BN
Hao Wang(王皓), Yaru Yin(殷亚茹), Xiong Yang(杨雄), Yanrui Guo(郭艳蕊), Ying Zhang(张颖), Huiyu Yan(严慧羽), Ying Wang(王莹), and Ping Huai(怀平). Chin. Phys. B, 2022, 31(2): 026102.
[6] Cluster dynamics modeling of niobium and titanium carbide precipitates in α-Fe and γ-Fe
Nadezda Korepanova, Long Gu(顾龙), Mihai Dima, and Hushan Xu(徐瑚珊). Chin. Phys. B, 2022, 31(2): 026103.
[7] Effect of oxygen on regulation of properties of moderately boron-doped diamond films
Dong-Yang Liu(刘东阳), Li-Cai Hao(郝礼才), Wei-Kang Zhao(赵伟康), Zi-Ang Chen(陈子昂), Kun Tang(汤琨), Shun-Ming Zhu(朱顺明), Jian-Dong Ye(叶建东), Rong Zhang(张荣), You-Dou Zheng(郑有炓), and Shu-Lin Gu(顾书林). Chin. Phys. B, 2022, 31(12): 128104.
[8] Accurate theoretical evaluation of strain energy of all-carboatomic ring (cyclo[2n]carbon), boron nitride ring, and cyclic polyacetylene
Tian Lu(卢天), Zeyu Liu(刘泽玉), and Qinxue Chen(陈沁雪). Chin. Phys. B, 2022, 31(12): 126101.
[9] Ohmic and Schottky contacts of hydrogenated and oxygenated boron-doped single-crystal diamond with hill-like polycrystalline grains
Jing-Cheng Wang(王旌丞), Hao Chen(陈浩), Lin-Feng Wan(万琳丰), Cao-Yuan Mu(牟草源), Yao-Feng Liu(刘尧峰), Shao-Heng Cheng(成绍恒), Qi-Liang Wang(王启亮), Liu-An Li(李柳暗), and Hong-Dong Li(李红东). Chin. Phys. B, 2021, 30(9): 096803.
[10] Synthesis and characterizations of boron and nitrogen co-doped high pressure and high temperature large single-crystal diamonds with increased mobility
Xin-Yuan Miao(苗辛原), Hong-An Ma(马红安), Zhuang-Fei Zhang(张壮飞), Liang-Chao Chen(陈良超), Li-Juan Zhou(周丽娟), Min-Si Li(李敏斯), and Xiao-Peng Jia(贾晓鹏). Chin. Phys. B, 2021, 30(6): 068102.
[11] Plasmonic properties of graphene on uniaxially anisotropic substrates
Shengchuan Wang(汪圣川), Bin You(游斌), Rui Zhang(张锐), Kui Han(韩奎), Xiaopeng Shen(沈晓鹏, and Weihua Wang(王伟华). Chin. Phys. B, 2021, 30(3): 037801.
[12] Properties of B4C-TiB2 ceramics prepared by spark plasma sintering
Jingzhe Fan(范静哲), Weixia Shen(沈维霞), Zhuangfei Zhang(张壮飞, Chao Fang(房超), Yuewen Zhang(张跃文), Liangchao Chen(陈良超), Qianqian Wang(王倩倩), Biao Wan(万彪), and Xiaopeng Jia(贾晓鹏). Chin. Phys. B, 2021, 30(3): 038105.
[13] Structure prediction, electronic, and mechanical properties of alkali metal MB12 ( M= Be, Mg, Ca, Sr) from first principles
Chun-Ying Pu(濮春英), Rong-Mei Yu(于荣梅), Ting Wang(王婷), Zhen-Yan X\"ue(薛振彦), Yong-Sheng Zhu(朱永胜), and Da-Wei Zhou(周大伟). Chin. Phys. B, 2021, 30(1): 017102.
[14] Extended damage range of (Al0.3Cr0.2Fe0.2Ni0.3)3O4 high entropy oxide films induced by surface irradiation
Jian-Cong Zhang(张健聪), Sen Sun(孙森), Zhao-Ming Yang(杨朝明), Nan Qiu(裘南), Yuan Wang(汪渊). Chin. Phys. B, 2020, 29(6): 066104.
[15] Seeing Dirac electrons and heavy fermions in new boron nitride monolayers
Yu-Jiao Kang(康玉娇), Yuan-Ping Chen(陈元平), Jia-Ren Yuan(袁加仁), Xiao-Hong Yan(颜晓红), Yue-E Xie(谢月娥). Chin. Phys. B, 2020, 29(5): 057303.
No Suggested Reading articles found!