Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(11): 114205    DOI: 10.1088/1674-1056/26/11/114205
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

2-μm mode-locked nanosecond fiber laser based on MoS2 saturable absorber

Xiao-Fa Wang(王小发), Xiao-Ling Peng(彭晓玲), Qiu-Xia Jiang(姜秋霞), Xiao-Hui Gu(顾小辉), Jun-Hong Zhang(张俊红), Xue-Feng Mao(毛雪峰), Su-Zhen Yuan(袁素贞)
Key Laboratory of Optical Fiber Communication Technology, Chongqing Education Commission, School of Optoelectronic Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
Abstract  We demonstrated a 2-μm passively mode-locked nanosecond fiber laser based on a MoS2 saturable absorber (SA). Owing to the effect of nonlinear absorption in the MoS2 SA, the pulse width decreased from 64.7 to 13.8 ns with increasing pump power from 1.10 to 1.45 W. The use of a narrow-bandwidth fiber Bragg grating resulted in a central wavelength and 3-dB spectral bandwidth of 2010.16 and 0.15 nm, respectively. Experimental results show that MoS2 is a promising material for a 2-μm mode-locked fiber laser.
Keywords:  nanosecond mode-locked pulses      Tm-doped fiber laser      MoS2      fiber Bragg grating  
Received:  09 May 2017      Revised:  16 July 2017      Accepted manuscript online: 
PACS:  42.60.Fc (Modulation, tuning, and mode locking)  
  42.65.Re (Ultrafast processes; optical pulse generation and pulse compression)  
  42.81.-i (Fiber optics)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11304409), the Natural Science Foundation of Chongqing City, China (Grant No. CSTC2013jcyjA4004), the Scientific and Technological Research Program of Chongqing Municipal Education Commission, China (Grant No. KJ1500422), and the Special Theme Projects on LCD Industrial Generic Technology Innovation of Chongqing City, China (Grant No. CSTC2015zdcy-ztzx40003).
Corresponding Authors:  Xiao-Fa Wang     E-mail:  bluebaby0614@126.com

Cite this article: 

Xiao-Fa Wang(王小发), Xiao-Ling Peng(彭晓玲), Qiu-Xia Jiang(姜秋霞), Xiao-Hui Gu(顾小辉), Jun-Hong Zhang(张俊红), Xue-Feng Mao(毛雪峰), Su-Zhen Yuan(袁素贞) 2-μm mode-locked nanosecond fiber laser based on MoS2 saturable absorber 2017 Chin. Phys. B 26 114205

[1] Moulton P F, Rines G A, Slobodtchikov E V, Wall K F, Frith G, Samson B and Carter A L G 2009 IEEE J. Sel. Top. Quant. Electron. 15 85
[2] Rudy C W, Digonnet M J F and Byer R L 2014 Opt. Fiber Technol. 20 642
[3] Liu X, Osgood R M, Vlasov Y A and Green W M J 2010 Nature Photon. 4 557
[4] Wang X, Zhou P, Wang X, Tao R and Si L 2013 IEEE Photon. J. 5 1502206
[5] Li J, Zhang Z, Sun Z, Luo H, Liu Y, Yan Z, Mou C, Zhang L and Turitsyn S K 2014 Opt. Express 22 7875
[6] Yan Z, Tang Y, Sun B, Liu T, Li X, Ping P S, Yu X, Zhang Y and Wang Q J 2015 Opt. Lett. 40 1916
[7] Yang N, Tang Y and Xu J 2015 Laser Phys. Lett. 12 085102
[8] Azooz S M, Ahmad F, Ahmad H, Harun S W, Hamida B A, Khan S, Halder A, Paul M C, Pal M and Bhadra S K 2015 Chin. Opt. Lett. 13 030602
[9] Sobon G, Sotor J, Pasternak I, Krajewska A, Strupinski W and Abramski K M 2015 Opt. Express 23 31446
[10] Liu X, Han D, Sun Z, Zeng C, Lu H, Mao D, Cui Y and Wang F 2013 Sci. Rep. 3 2718
[11] Zhang H, Tang D, Knize R J, Zhao L, Bao Q and Loh K P 2010 Appl. Phys. Lett. 96 111112
[12] Gierz I, Petersen J C, Mitrano M, Cacho C, Turcu E, Springate E, Stöhr A, Köhler A, Starke U and Cavalleri A 2013 Nat. Mater. 12 1119
[13] Shi H, Yan R, Bertolazzi S, Brivio J, Gao B, Kis A, Jena D, Xing H G and Huang L 2013 ACS Nano 7 1072
[14] Wang S, Yu H, Zhang H, Wang A, Zhao M, Chen Y, Mei L and J Wang 2014 Adv. Mater. 26 3538
[15] Wang K, Wang J, Fan J, Lotya M, O'Neill A, Fox D, Feng Y, Zhang X, Jiang B, Zhao Q, Zhang H, Coleman J N, Zhang L and Blau W J 2013 ACS Nano 7 9260
[16] Xia H, Li H, Lan C, Li C, Du J, Zhang S and Liu Y 2015 Photon. Res. 3 A92
[17] Huang Y, Luo Z, Li Y, Zhong M, Xu B, Che K, Xu H, Cai Z, Peng J and Weng J 2014 Opt. Express 22 25258
[18] Du J, Wang Q, Jiang G, Xu C, Zhao C, Xiang Y, Chen Y, Wen S and Zhang H 2014 Sci. Rep. 4 6346
[19] Wu K, Zhang X, Wang J and Chen J 2015 Opt. Lett. 40 1374
[20] Duan L N, Su Y L, Wang Y G, Li L, Wang X and Wang Y S 2016 Chin. Phys. B 25 024206
[21] Kelleher E J R, Travers J C, Sun Z, Rozhin A G, Ferrari A C, Popov S V and Taylor J R 2009 Appl. Phys. Lett. 95 111108
[22] Fu B, Gui L, Li X, Xiao X, Zhu H and Yang C 2013 IEEE Photo. Technol. Lett. 25 1447
[23] Xia H, Li H, Wang Z, Chen Yuan, Zhang X, Tang X and Liu Y 2014 Opt. Commun. 330 147
[24] Zhan Y and Wang C 2016 Opt. Quant. Electron. 48 1
[25] Guo B, Yao Y, Yan P G, Xu K, Liu J J, Wang S G and Li Y 2016 IEEE Photo. Technol. Lett. 28 323
[26] Zhou D P, Wei L, Dong B and Liu W K 2010 IEEE Photo. Technol. Lett. 22 9
[27] Liu X, Cui Y, Han D, Yao X and Sun Z 2015 Sci. Rep. 5 9101
[28] Liu X M, Han X X and Yao X K 2016 Sci. Rep. 6 34414
[1] Resonant perfect absorption of molybdenum disulfide beyond the bandgap
Hao Yu(于昊), Ying Xie(谢颖), Jiahui Wei(魏佳辉), Peiqing Zhang(张培晴),Zhiying Cui(崔志英), and Haohai Yu(于浩海). Chin. Phys. B, 2023, 32(4): 048101.
[2] A three-band perfect absorber based on a parallelogram metamaterial slab with monolayer MoS2
Wen-Jing Zhang(张雯婧), Qing-Song Liu(刘青松), Bo Cheng(程波), Ming-Hao Chao(晁明豪),Yun Xu(徐云), and Guo-Feng Song(宋国峰). Chin. Phys. B, 2023, 32(3): 034211.
[3] MoS2/Si tunnel diodes based on comprehensive transfer technique
Yi Zhu(朱翊), Hongliang Lv(吕红亮), Yuming Zhang(张玉明), Ziji Jia(贾紫骥), Jiale Sun(孙佳乐), Zhijun Lyu(吕智军), and Bin Lu(芦宾). Chin. Phys. B, 2023, 32(1): 018501.
[4] Growth behaviors and emission properties of Co-deposited MAPbI3 ultrathin films on MoS2
Siwen You(游思雯), Ziyi Shao(邵子依), Xiao Guo(郭晓), Junjie Jiang(蒋俊杰), Jinxin Liu(刘金鑫), Kai Wang(王凯), Mingjun Li(李明君), Fangping Ouyang(欧阳方平), Chuyun Deng(邓楚芸), Fei Song(宋飞), Jiatao Sun(孙家涛), and Han Huang(黄寒). Chin. Phys. B, 2023, 32(1): 017901.
[5] Enhanced photoluminescence of monolayer MoS2 on stepped gold structure
Yu-Chun Liu(刘玉春), Xin Tan(谭欣), Tian-Ci Shen(沈天赐), and Fu-Xing Gu(谷付星). Chin. Phys. B, 2022, 31(8): 087803.
[6] Monolayer MoS2 of high mobility grown on SiO2 substrate by two-step chemical vapor deposition
Jia-Jun Ma(马佳俊), Kang Wu(吴康), Zhen-Yu Wang(王振宇), Rui-Song Ma(马瑞松), Li-Hong Bao(鲍丽宏), Qing Dai(戴庆), Jin-Dong Ren(任金东), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2022, 31(8): 088105.
[7] Precisely controlling the twist angle of epitaxial MoS2/graphene heterostructure by AFM tip manipulation
Jiahao Yuan(袁嘉浩), Mengzhou Liao(廖梦舟), Zhiheng Huang(黄智恒), Jinpeng Tian(田金朋), Yanbang Chu(褚衍邦), Luojun Du(杜罗军), Wei Yang(杨威), Dongxia Shi(时东霞), Rong Yang(杨蓉), and Guangyu Zhang(张广宇). Chin. Phys. B, 2022, 31(8): 087302.
[8] Improved performance of MoS2 FET by in situ NH3 doping in ALD Al2O3 dielectric
Xiaoting Sun(孙小婷), Yadong Zhang(张亚东), Kunpeng Jia(贾昆鹏), Guoliang Tian(田国良), Jiahan Yu(余嘉晗), Jinjuan Xiang(项金娟), Ruixia Yang(杨瑞霞), Zhenhua Wu(吴振华), and Huaxiang Yin(殷华湘). Chin. Phys. B, 2022, 31(7): 077701.
[9] Anisotropic refraction and valley-spin-dependent anomalous Klein tunneling in a 1T'-MoS2-based p-n junction
Fenghua Qi(戚凤华) and Xingfei Zhou(周兴飞). Chin. Phys. B, 2022, 31(7): 077301.
[10] Vacuum current-carrying tribological behavior of MoS2-Ti films with different conductivities
Lu-Lu Pei(裴露露), Peng-Fei Ju(鞠鹏飞), Li Ji(吉利), Hong-Xuan Li(李红轩),Xiao-Hong Liu(刘晓红), Hui-Di Zhou(周惠娣), and Jian-Min Chen(陈建敏). Chin. Phys. B, 2022, 31(6): 066201.
[11] Analysis of the generation mechanism of the S-shaped JV curves of MoS2/Si-based solar cells
He-Ju Xu(许贺菊), Li-Tao Xin(辛利桃), Dong-Qiang Chen(陈东强), Ri-Dong Cong(丛日东), and Wei Yu(于威). Chin. Phys. B, 2022, 31(3): 038503.
[12] High-sensitive phototransistor based on vertical HfSe2/MoS2 heterostructure with broad-spectral response
Wen Deng(邓文), Li-Sheng Wang(汪礼胜), Jia-Ning Liu(刘嘉宁), Tao Xiang(相韬), and Feng-Xiang Chen(陈凤翔). Chin. Phys. B, 2022, 31(12): 128502.
[13] Tunable terahertz transmission behaviors and coupling mechanism in hybrid MoS2 metamaterials
Yuwang Deng(邓雨旺), Qingli Zhou(周庆莉), Wanlin Liang(梁菀琳), Pujing Zhang(张朴婧), and Cunlin Zhang(张存林). Chin. Phys. B, 2022, 31(1): 014101.
[14] Temperature-switching logic in MoS2 single transistors
Xiaozhang Chen(陈孝章), Lehua Gu(顾乐华), Lan Liu(刘岚), Huawei Chen(陈华威), Jingyu Li(栗敬俣), Chunsen Liu(刘春森), Peng Zhou(周鹏). Chin. Phys. B, 2020, 29(9): 097201.
[15] First-principles study of magnetism of 3d transition metals and nitrogen co-doped monolayer MoS2
Long Lin(林龙), Yi-Peng Guo(郭义鹏), Chao-Zheng He(何朝政), Hua-Long Tao(陶华龙), Jing-Tao Huang(黄敬涛), Wei-Yang Yu(余伟阳), Rui-Xin Chen(陈瑞欣), Meng-Si Lou(娄梦思), Long-Bin Yan(闫龙斌). Chin. Phys. B, 2020, 29(9): 097102.
No Suggested Reading articles found!