ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
2-μm mode-locked nanosecond fiber laser based on MoS2 saturable absorber |
Xiao-Fa Wang(王小发), Xiao-Ling Peng(彭晓玲), Qiu-Xia Jiang(姜秋霞), Xiao-Hui Gu(顾小辉), Jun-Hong Zhang(张俊红), Xue-Feng Mao(毛雪峰), Su-Zhen Yuan(袁素贞) |
Key Laboratory of Optical Fiber Communication Technology, Chongqing Education Commission, School of Optoelectronic Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China |
|
|
Abstract We demonstrated a 2-μm passively mode-locked nanosecond fiber laser based on a MoS2 saturable absorber (SA). Owing to the effect of nonlinear absorption in the MoS2 SA, the pulse width decreased from 64.7 to 13.8 ns with increasing pump power from 1.10 to 1.45 W. The use of a narrow-bandwidth fiber Bragg grating resulted in a central wavelength and 3-dB spectral bandwidth of 2010.16 and 0.15 nm, respectively. Experimental results show that MoS2 is a promising material for a 2-μm mode-locked fiber laser.
|
Received: 09 May 2017
Revised: 16 July 2017
Accepted manuscript online:
|
PACS:
|
42.60.Fc
|
(Modulation, tuning, and mode locking)
|
|
42.65.Re
|
(Ultrafast processes; optical pulse generation and pulse compression)
|
|
42.81.-i
|
(Fiber optics)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11304409), the Natural Science Foundation of Chongqing City, China (Grant No. CSTC2013jcyjA4004), the Scientific and Technological Research Program of Chongqing Municipal Education Commission, China (Grant No. KJ1500422), and the Special Theme Projects on LCD Industrial Generic Technology Innovation of Chongqing City, China (Grant No. CSTC2015zdcy-ztzx40003). |
Corresponding Authors:
Xiao-Fa Wang
E-mail: bluebaby0614@126.com
|
Cite this article:
Xiao-Fa Wang(王小发), Xiao-Ling Peng(彭晓玲), Qiu-Xia Jiang(姜秋霞), Xiao-Hui Gu(顾小辉), Jun-Hong Zhang(张俊红), Xue-Feng Mao(毛雪峰), Su-Zhen Yuan(袁素贞) 2-μm mode-locked nanosecond fiber laser based on MoS2 saturable absorber 2017 Chin. Phys. B 26 114205
|
[1] |
Moulton P F, Rines G A, Slobodtchikov E V, Wall K F, Frith G, Samson B and Carter A L G 2009 IEEE J. Sel. Top. Quant. Electron. 15 85
|
[2] |
Rudy C W, Digonnet M J F and Byer R L 2014 Opt. Fiber Technol. 20 642
|
[3] |
Liu X, Osgood R M, Vlasov Y A and Green W M J 2010 Nature Photon. 4 557
|
[4] |
Wang X, Zhou P, Wang X, Tao R and Si L 2013 IEEE Photon. J. 5 1502206
|
[5] |
Li J, Zhang Z, Sun Z, Luo H, Liu Y, Yan Z, Mou C, Zhang L and Turitsyn S K 2014 Opt. Express 22 7875
|
[6] |
Yan Z, Tang Y, Sun B, Liu T, Li X, Ping P S, Yu X, Zhang Y and Wang Q J 2015 Opt. Lett. 40 1916
|
[7] |
Yang N, Tang Y and Xu J 2015 Laser Phys. Lett. 12 085102
|
[8] |
Azooz S M, Ahmad F, Ahmad H, Harun S W, Hamida B A, Khan S, Halder A, Paul M C, Pal M and Bhadra S K 2015 Chin. Opt. Lett. 13 030602
|
[9] |
Sobon G, Sotor J, Pasternak I, Krajewska A, Strupinski W and Abramski K M 2015 Opt. Express 23 31446
|
[10] |
Liu X, Han D, Sun Z, Zeng C, Lu H, Mao D, Cui Y and Wang F 2013 Sci. Rep. 3 2718
|
[11] |
Zhang H, Tang D, Knize R J, Zhao L, Bao Q and Loh K P 2010 Appl. Phys. Lett. 96 111112
|
[12] |
Gierz I, Petersen J C, Mitrano M, Cacho C, Turcu E, Springate E, Stöhr A, Köhler A, Starke U and Cavalleri A 2013 Nat. Mater. 12 1119
|
[13] |
Shi H, Yan R, Bertolazzi S, Brivio J, Gao B, Kis A, Jena D, Xing H G and Huang L 2013 ACS Nano 7 1072
|
[14] |
Wang S, Yu H, Zhang H, Wang A, Zhao M, Chen Y, Mei L and J Wang 2014 Adv. Mater. 26 3538
|
[15] |
Wang K, Wang J, Fan J, Lotya M, O'Neill A, Fox D, Feng Y, Zhang X, Jiang B, Zhao Q, Zhang H, Coleman J N, Zhang L and Blau W J 2013 ACS Nano 7 9260
|
[16] |
Xia H, Li H, Lan C, Li C, Du J, Zhang S and Liu Y 2015 Photon. Res. 3 A92
|
[17] |
Huang Y, Luo Z, Li Y, Zhong M, Xu B, Che K, Xu H, Cai Z, Peng J and Weng J 2014 Opt. Express 22 25258
|
[18] |
Du J, Wang Q, Jiang G, Xu C, Zhao C, Xiang Y, Chen Y, Wen S and Zhang H 2014 Sci. Rep. 4 6346
|
[19] |
Wu K, Zhang X, Wang J and Chen J 2015 Opt. Lett. 40 1374
|
[20] |
Duan L N, Su Y L, Wang Y G, Li L, Wang X and Wang Y S 2016 Chin. Phys. B 25 024206
|
[21] |
Kelleher E J R, Travers J C, Sun Z, Rozhin A G, Ferrari A C, Popov S V and Taylor J R 2009 Appl. Phys. Lett. 95 111108
|
[22] |
Fu B, Gui L, Li X, Xiao X, Zhu H and Yang C 2013 IEEE Photo. Technol. Lett. 25 1447
|
[23] |
Xia H, Li H, Wang Z, Chen Yuan, Zhang X, Tang X and Liu Y 2014 Opt. Commun. 330 147
|
[24] |
Zhan Y and Wang C 2016 Opt. Quant. Electron. 48 1
|
[25] |
Guo B, Yao Y, Yan P G, Xu K, Liu J J, Wang S G and Li Y 2016 IEEE Photo. Technol. Lett. 28 323
|
[26] |
Zhou D P, Wei L, Dong B and Liu W K 2010 IEEE Photo. Technol. Lett. 22 9
|
[27] |
Liu X, Cui Y, Han D, Yao X and Sun Z 2015 Sci. Rep. 5 9101
|
[28] |
Liu X M, Han X X and Yao X K 2016 Sci. Rep. 6 34414
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|