ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Two-color laser wavelength effect on intense terahertz generation in air |
Shufen Li(李淑芬)1,2, Chenhui Lu(卢晨晖)3, Chengshuai Yang(杨承帅)2, Yanzhong Yu(余燕忠)1, Zhenrong Sun(孙真荣)2, Shian Zhang(张诗按)2,4 |
1. College of Physics and Information Engineering and Key Laboratory of Information Functional Material for Fujian Higher Education, Quanzhou Normal University, Quanzhou 362000, China; 2. State Key Laboratory of Precision Spectroscopy, and School of Physics and Materials Science, East China Normal University, Shanghai 200062, China; 3. College of Mechanical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China; 4. Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China |
|
|
Abstract Near-IR femtosecond lasers have been proposed to produce high-field terahertz radiation in the air via the laser-plasma interaction, but the physical mechanism still needs to be further explored. In this work, we theoretically investigate the effect of the two-color laser wavelength on the terahertz generation in the air based on a transient photocurrent model. We show that the long wavelength laser excitation can greatly enhance the terahertz amplitude for a given total laser intensity. Furthermore, we utilize a local current model to illustrate the enhancement mechanism. Our analysis shows that the terahertz amplitude is determined by the superposition of contributions from individual ionization events, and for the long wavelength laser excitation, the electron production concentrates in a few ionization events and acquires the larger drift velocities, which results in the stronger terahertz radiation generation. These results will be very helpful for understanding the terahertz generation process and optimizing the terahertz output.
|
Received: 26 February 2017
Revised: 30 May 2017
Accepted manuscript online:
|
PACS:
|
42.65.Re
|
(Ultrafast processes; optical pulse generation and pulse compression)
|
|
32.80.Fb
|
(Photoionization of atoms and ions)
|
|
52.50.Jm
|
(Plasma production and heating by laser beams (laser-foil, laser-cluster, etc.))
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 51132004, 11604205, and 11474096), Science and Technology Commission of Shanghai Municipality, China (Grant No. 14JC1401500), Shanghai Municipal Education Commission, China (Grant No. ZZGCD15066), and Foundation of Fujian Educational Committee, China (Grant No. JAT160412). |
Corresponding Authors:
Chenhui Lu, Shian Zhang
E-mail: lchhuiz@163.com;sazhang@phy.ecnu.edu.cn
|
Cite this article:
Shufen Li(李淑芬), Chenhui Lu(卢晨晖), Chengshuai Yang(杨承帅), Yanzhong Yu(余燕忠), Zhenrong Sun(孙真荣), Shian Zhang(张诗按) Two-color laser wavelength effect on intense terahertz generation in air 2017 Chin. Phys. B 26 114206
|
[1] |
Davies A G, Burnett A D, Fan W, Linfield E H and Cunningham J E 2008 Materials Today 11 18
|
[2] |
Han P Y, Cho G C and Zhang X C 2000 Opt. Lett. 25 242
|
[3] |
Kleine-Ostmann T and Nagatsuma T 2011 J. Infrared. Milli. Terahertz Waves 32 143
|
[4] |
Song H J and Nagatsuma T 2011 IEEE Tran. Terahertz Sci. Tech. 1 256
|
[5] |
Johnson J L, Dorney T D and Mittleman D M 2001 Appl. Phys. Lett. 78 835
|
[6] |
Liu J, Dai J, Chin S L and Zhang X C 2010 Nat. Photon. 4 627
|
[7] |
Kim K Y, Glownia J H, Taylor A J and Rodriguez G 2007 Opt. Express 15 4577
|
[8] |
Roskos H G, Thomson M D, Kre ß M and Löffler T 2007 Laser Photonics Rev. 1 349
|
[9] |
Gildenburge V B and Vvedenskii N V 2007 Phys. Rev. Lett. 98 245002
|
[10] |
Auston D H and Smith P R 1983 Appl. Phys. Lett. 43 631
|
[11] |
Fattinger and Grischkowsky D 1989 Appl. Phys. Lett. 54 490
|
[12] |
Auston H, Cheung K P, Valdmanis J A and Kleinman D A 1984 Phys. Rev. Lett. 53 1555
|
[13] |
Cook D J and Hochstrasser R M 2000 Opt. Lett. 25 1210
|
[14] |
Kim K Y 2009 Phys. Plasmas 16 056706
|
[15] |
Xie X, Dai J and Zhang X C 2006 Phys. Rev. Lett. 96 075005
|
[16] |
Kim K Y, Taylor A J, Glownia J H and Rodriguez G 2008 Nat. Photon. 2 605
|
[17] |
Babushkin I, Kuehn W, Köhler C, Skupin S, BergéL, Reimann K, Woerner M, Herrmann J and Elsaesser T 2010 Phys. Rev. Lett. 105 53903
|
[18] |
Bergé L, Skupin S, Köhler C, Babushkin I and Herrmann J 2013 Phys. Rev. Lett. 110 073901
|
[19] |
Silaev A A and Vvedenskii N V 2009 Phys. Rev. Lett. 102 115005
|
[20] |
Vvedenskii N V, Korytin A I, Kostin V A, Murzanev A A, Silaev A A and Stepanov A N 2014 Phys. Rev. Lett. 112 055004
|
[21] |
Dai H and Liu J 2011 J. Mod. Opt. 58 859
|
[22] |
Lu C, He T, Zhang L, Zhang H, Yao Y, Li S and Zhang S 2015 Phys. Rev. A 92 063850
|
[23] |
Bai Y, Song L Y, Liu P and Li R X 2017 Chin. Phys. Lett. 34 014201
|
[24] |
Li M, Li A Y, He B Q, Yuan S and Zeng H P 2016 Chin. Phys. B 25 044209
|
[25] |
Sell A, Leitenstorfer A and Huber R 2008 Opt. Lett. 33 2767
|
[26] |
Wang T J, Daigle J F, Yuan S, Théberge F, Châteauneuf M, Dubois J, Roy G, Zeng H and Chin S L 2011 Phys. Rev. A 83 053801
|
[27] |
Daigle J F, Théberge F, Henriksson M, Wang T J, Yuan S, Châteauneuf M, Dubois J, Piché M and Chin S L 2012 Opt. Express 20 6825
|
[28] |
Clerici M, Peccianti M, Schmidt B E, Caspani L, Caspani L, Shalaby M, Giguére M, Lotti A, Couairon A, Légaré F, Ozaki T, Faccio D and Morandotti R 2013 Phys. Rev. Lett. 110 253901
|
[29] |
Vvedenskii N V, Korytin A I, Kostin V A, Murzanev A A, Silaev A A and Stepanov A N 2014 Phys. Rev. Lett. 112 055004
|
[30] |
González de Alaiza Martinez P, Babushkin I, Bergé L, Skupin S, Cabrera-Granado E and Kohler C 2015 Phys. Rev. Lett. 114 183901
|
[31] |
Wu S, Liu J, Wang S and Zeng Y 2013 Chin. Opt. Lett. 11 101402
|
[32] |
Babushkin I, Skupin S, Husakou A, Köhler C, Cabrera-Granado E, Berge L and Herrmann J 2011 New J. Phys. 13 123029
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|