Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(1): 017803    DOI: 10.1088/1674-1056/26/1/017803
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

High-efficiency InGaN/AlInGaN multiple quantum wells with lattice-matched AlInGaN superlattices barrier

Feng Xu(徐峰)1,2, Peng Chen(陈鹏)1,2, Fu-Long Jiang(蒋府龙)1, Ya-Yun Liu(刘亚云)1, Zi-Li Xie(谢自立)1, Xiang-Qian Xiu(修向前)1, Xue-Mei Hua(华雪梅)1, Yi Shi(施毅)1, Rong Zhang(张荣)1, You-Liao Zheng(郑有炓)1
1. Key Laboratory of Advanced Photonic and Electronic Materials, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China;
2. Nanjing University Institute of Optoelectronics at Yangzhou, Yangzhou 225009, China
Abstract  A new approach to fabricating high-quality AlInGaN film as a lattice-matched barrier layer in multiple quantum wells (MQWs) is presented. The high-quality AlInGaN film is realized by growing the AlGaN/InGaN short period superlattices through metalorganic chemical vapor deposition, and then being used as a barrier in the MQWs. The crystalline quality of the MQWs with the lattice-matched AlInGaN barrier and that of the conventional InGaN/GaN MQWs are characterized by x-ray diffraction and scanning electron microscopy. The photoluminescence (PL) properties of the InGaN/AlInGaN MQWs are investigated by varying the excitation power density and temperature through comparing with those of the InGaN/GaN MQWs. The integral PL intensity of InGaN/AlInGaN MQWs is over 3 times higher than that of InGaN/GaN MQWs at room temperature under the highest excitation power. Temperature-dependent PL further demonstrates that the internal quantum efficiency of InGaN/AlInGaN MQWs (76.1%) is much higher than that of InGaN/GaN MQWs (21%). The improved luminescence performance of InGaN/AlInGaN MQWs can be attributed to the distinct reduction of the barrier-well lattice mismatch and the strain-induced non-radiative recombination centers.
Keywords:  AlInGaN superlattices      MQWs      photoluminescence      x-ray diffraction spectrum  
Received:  22 July 2016      Revised:  18 October 2016      Accepted manuscript online: 
PACS:  78.55.Cr (III-V semiconductors)  
  78.67.Pt (Multilayers; superlattices; photonic structures; metamaterials)  
  78.67.De (Quantum wells)  
  78.55.-m (Photoluminescence, properties and materials)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61274003, 61422401, 51461135002, and 61334009), the Natural Science Foundation of Jiangsu Province, China (Grant Nos. BY2013077, BK20141320, BE2015111, and BK20161324), the Program for New Century Excellent Talents in University, China (Grant No. NCET-11-0229), and the Special Semiconductor Materials and Devices Research Funds from State Grid Shandong Electric Power Company, China.
Corresponding Authors:  Peng Chen     E-mail:  pchen@nju.edu.cn

Cite this article: 

Feng Xu(徐峰), Peng Chen(陈鹏), Fu-Long Jiang(蒋府龙), Ya-Yun Liu(刘亚云), Zi-Li Xie(谢自立), Xiang-Qian Xiu(修向前), Xue-Mei Hua(华雪梅), Yi Shi(施毅), Rong Zhang(张荣), You-Liao Zheng(郑有炓) High-efficiency InGaN/AlInGaN multiple quantum wells with lattice-matched AlInGaN superlattices barrier 2017 Chin. Phys. B 26 017803

[1] Tu P M, Chang C Y, Huang S C, Chiu C H, Chang J R, Chang W T, Wuu D S, Zan H W, Lin C C, Kuo H C and Hsu C P 2011 Appl. Phys. Lett. 98 211107
[2] Neugebauer S, Metzner S, Bläsing J, Bertram F, Dadgar A, Christen J and Strittmatter A 2015 Physica. Status. Solidi. (b) 253 118
[3] Liu J Z, Lin C H, Lee K Y, Wang Y L, Liao C L, Chang Y F, Ho C L and Wu M C 2015 IEEE J. Quantum. Elect. 51 1
[4] Zhu M, Zhang X, Wang S, Yang H Q and Cui Y P 2014 J. Mater. Sci.-Mater. El. 26 705
[5] Lee S N, Paek H S, Kim H, Kima K K, Chob Y H, Janga T and Parka Y 2008 J. Cryst. Growth 310 3881
[6] Shang J S, Zhang B P, Mao M H, Cai L E, Zhang J Y, Fang Z L, Liu B L, Yu J Z, Wang Q M, Kusakabec K and Ohkawa K 2009 J. Cryst. Growth 311 474
[7] Jones L M, Fagan S and Mair E A 2014 Appl. Phys. Lett. 104 051258
[8] Broeck D M V D, Bharrat D, Hosalli A M, El-Masry N A and Bedair S M 2014 Appl. Phys. Lett. 105 3
[9] Wang F, Li S S, Xia J B and Jiang H X 2007 Appl. Phys. Lett. 91 061125
[10] Cai J H, Sun H Q, Zhen H, Zhang P J and Guo Z Y 2014 Chin. Phys. B 23 630
[11] YU T J, Pan Y B, Yang Z J, Xu K and Zhang G Y 2007 J. Cryst. Growth 298 211
[12] Pan Y B, Yu T J, Yang Z J, Wang H, Qin Z X, Hu X D, Wang K, Yao S D and Zhang G Y 2007 J. Cryst. Growth 298 341
[13] Liu Y, Egawa T, Ishikawa H and Jimbo T 2003 J. Cryst. Growth 259 245
[14] Liu J P, Zhang B S, Wu M, Li D B, Zhang J C, Jin R Q, Zhu J J, Chen J, Wang J F, Wang Y T and Yang H 2004 J. Cryst. Growth 260 388
[15] Soh C B, Chua S J, Liu W, Lai M Y and Tripathy S 2005 Solid. State. Commun. 136 421
[16] Liu Q J, Shao Y, Wu Z L, Xu Z, Xu F, Liu B, Xie Z L and Chen P 2009 Acta Phys. Sin. 58 7194
[17] Moram M A and Vickers M E 2009 Rep. Prog. Phys. 72 036502
[18] Nishinaka J, Funato M, Kido R and Kawakami Y 2016 Phys. Status. Solidi 253 78
[19] Xiong J Y, Xu Y Q, Zhao F, Song J J, Ding B B, Zheng S W, Zhang T and Fan G H 2013 Chin. Phys. B 22 108505
[20] Watababe K, Yang J R, Huang S Y, Inoke K, Hsu J T, Tu R C, Yamazaki T, Nakanishi N and Shiojiri M 2003 Appl. Phys. Lett. 82 718
[21] Liu W, Soh CB, Chen P and Chua S J 2004 J. Cryst. Growth 268 509
[22] Liu Z H, Zhang L L, Li Q F, Zhang R, Xiu X Q, Xie Z L and Shan Y 2014 Acta Phys. Sin. 63 207304(in Chinese)
[23] Chen G F, Tan X D, Wan W T, Shen J, Hao Q Y, Tang C C, Zhu J J, Liu Z S, Zhao D G and Zhang S M 2011 Acta Phys. Sin. 60 076104(in Chinese)
[24] Cao W Y, He Y F, Chen Z, Yang W, Du W M and Hu X D 2013 Chin. Phys. B 22 076803
[25] Yu E T and Manasreh O 2002 III-V Nitride Semiconductors:Applications and Devices (CRC Press) pp. 17-22
[26] Chen P, Chen A, Chua S J and Tan J N 2007 Adv. Mater. 19 1707
[27] Zhang J P, Yang J, Simin G, Shatalov M, Khan M A, Shur M S and Gaska R 2000 Appl. Phys. Lett. 77 2668
[28] Wang T, Bai J, Sakai S and Ho J K 2001 Appl. Phys. Lett. 78 2617
[29] Meneghini M, Grassa M L, Vaccari S, Galler B, Zeisel R, Drechsel P, Hahn B, Meneghesso G and Zanoni E 2014 Appl. Phys. Lett. 104 113505
[30] Gotz W, Johnson N M, Chen C, Liu H, Kuo C and Imler W 1996 Appl. Phys. Lett. 68 3144
[31] Lai Y L, Liu C P, Lin Y H, Hsuch T H, Lin R M, Lyu D Y, Peng Z X and Lin T Y 2006 Nanotechnology 17 3734
[32] Yoichi Y, Kazuto I, Takahiro K, Naohiko S, Tsunemasa T, Hiromitsu K and Hiroaki O 2008 J. Light & Vis. Env. 32 191
[33] Wang X S, Ji Z W, Wang H N, Xu M S, Xu X G, Lu Y J and Feng Z H 2014 Acta Phys. Sin. 63 127801(in Chinese)
[1] Thermally enhanced photoluminescence and temperature sensing properties of Sc2W3O12:Eu3+ phosphors
Yu-De Niu(牛毓德), Yu-Zhen Wang(汪玉珍), Kai-Ming Zhu(朱凯明), Wang-Gui Ye(叶王贵), Zhe Feng(冯喆), Hui Liu(柳挥), Xin Yi(易鑫), Yi-Huan Wang(王怡欢), and Xuan-Yi Yuan(袁轩一). Chin. Phys. B, 2023, 32(2): 028703.
[2] Growth behaviors and emission properties of Co-deposited MAPbI3 ultrathin films on MoS2
Siwen You(游思雯), Ziyi Shao(邵子依), Xiao Guo(郭晓), Junjie Jiang(蒋俊杰), Jinxin Liu(刘金鑫), Kai Wang(王凯), Mingjun Li(李明君), Fangping Ouyang(欧阳方平), Chuyun Deng(邓楚芸), Fei Song(宋飞), Jiatao Sun(孙家涛), and Han Huang(黄寒). Chin. Phys. B, 2023, 32(1): 017901.
[3] Enhanced photoluminescence of monolayer MoS2 on stepped gold structure
Yu-Chun Liu(刘玉春), Xin Tan(谭欣), Tian-Ci Shen(沈天赐), and Fu-Xing Gu(谷付星). Chin. Phys. B, 2022, 31(8): 087803.
[4] Exploration of structural, optical, and photoluminescent properties of (1-x)NiCo2O4/xPbS nanocomposites for optoelectronic applications
Zein K Heiba, Mohamed Bakr Mohamed, Noura M Farag, and Ali Badawi. Chin. Phys. B, 2022, 31(6): 067801.
[5] Effect of different catalysts and growth temperature on the photoluminescence properties of zinc silicate nanostructures grown via vapor-liquid-solid method
Ghfoor Muhammad, Imran Murtaza, Rehan Abid, and Naeem Ahmad. Chin. Phys. B, 2022, 31(5): 057801.
[6] Exciton luminescence and many-body effect of monolayer WS2 at room temperature
Jian-Min Wu(吴建民), Li-Hui Li(黎立辉), Wei-Hao Zheng(郑玮豪), Bi-Yuan Zheng(郑弼元), Zhe-Yuan Xu(徐哲元), Xue-Hong Zhang(张学红), Chen-Guang Zhu(朱晨光), Kun Wu(吴琨), Chi Zhang(张弛), Ying Jiang(蒋英),Xiao-Li Zhu(朱小莉), and Xiu-Juan Zhuang(庄秀娟). Chin. Phys. B, 2022, 31(5): 057803.
[7] Pressure- and temperature-dependent luminescence from Tm3+ ions doped in GdYTaO4
Peng-Yu Zhou(周鹏宇), Xiu-Ming Dou(窦秀明), Bao-Quan Sun(孙宝权), Ren-Qin Dou(窦仁琴), Qing-Li Zhang(张庆礼), Bao Liu(刘鲍), Pu-Geng Hou(侯朴赓), Kai-Lin Chi(迟凯粼), and Kun Ding(丁琨). Chin. Phys. B, 2022, 31(1): 017101.
[8] Magnetic polaron-related optical properties in Ni(II)-doped CdS nanobelts: Implication for spin nanophotonic devices
Fu-Jian Ge(葛付建), Hui Peng(彭辉), Ye Tian(田野), Xiao-Yue Fan(范晓跃), Shuai Zhang(张帅), Xian-Xin Wu(吴宪欣), Xin-Feng Liu(刘新风), and Bing-Suo Zou(邹炳锁). Chin. Phys. B, 2022, 31(1): 017802.
[9] Controllable preparation and disorder-dependent photoluminescence of morphologically different C60 microcrystals
Wen Cui(崔雯), De-Jun Li(李德军), Jin-Liang Guo(郭金良), Lang-Huan Zhao(赵琅嬛), Bing-Bing Liu(刘冰冰), and Shi-Shuai Sun(孙士帅). Chin. Phys. B, 2021, 30(8): 086101.
[10] Optical spectroscopy study of damage evolution in 6H-SiC by H$_{2}^{ + }$ implantation
Yong Wang(王勇), Qing Liao(廖庆), Ming Liu(刘茗), Peng-Fei Zheng(郑鹏飞), Xinyu Gao(高新宇), Zheng Jia(贾政), Shuai Xu(徐帅), and Bing-Sheng Li(李炳生). Chin. Phys. B, 2021, 30(5): 056106.
[11] Combined effects of carrier scattering and Coulomb screening on photoluminescence in InGaN/GaN quantum well structure with high In content
Rui Li(李睿), Ming-Sheng Xu(徐明升), Peng Wang(汪鹏), Cheng-Xin Wang(王成新), Shang-Da Qu(屈尚达), Kai-Ju Shi(时凯居), Ye-Hui Wei(魏烨辉), Xian-Gang Xu(徐现刚), and Zi-Wu Ji(冀子武). Chin. Phys. B, 2021, 30(4): 047801.
[12] Microstructure, optical, and photoluminescence properties of β -Ga2O3 films prepared by pulsed laser deposition under different oxygen partial pressures
Rui-Rui Cui(崔瑞瑞), Jun Zhang(张俊), Zi-Jiang Luo(罗子江), Xiang Guo(郭祥), Zhao Ding(丁召), and Chao-Yong Deng(邓朝勇). Chin. Phys. B, 2021, 30(2): 028505.
[13] Exciton emissions of CdS nanowire array fabricated on Cd foil by the solvothermal method
Yong Li(李勇), Peng-Fei Ji(姬鹏飞), Ya-Juan Hao(郝亚娟), Yue-Li Song(宋月丽), Feng-Qun Zhou(周丰群), and Shu-Qing Yuan(袁书卿). Chin. Phys. B, 2021, 30(1): 016104.
[14] Energy transfer, luminescence properties, and thermal stability of color tunable barium pyrophosphate phosphors
Meng-Jiao Xu(徐梦姣), Su-Xia Li(李素霞), Chen-Chen Ji(季辰辰), Wan-Xia Luo(雒晚霞), Lu-Xiang Wang(王鲁香). Chin. Phys. B, 2020, 29(6): 063301.
[15] Photoluminescence of green InGaN/GaN MQWs grown on pre-wells
Shou-Qiang Lai(赖寿强), Qing-Xuan Li(李青璇), Hao Long(龙浩), Jin-Zhao Wu(吴瑾照), Lei-Ying Ying(应磊莹), Zhi-Wei Zheng(郑志威), Zhi-Ren Qiu(丘志仁), and Bao-Ping Zhang(张保平). Chin. Phys. B, 2020, 29(12): 127802.
No Suggested Reading articles found!