CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
High-efficiency InGaN/AlInGaN multiple quantum wells with lattice-matched AlInGaN superlattices barrier |
Feng Xu(徐峰)1,2, Peng Chen(陈鹏)1,2, Fu-Long Jiang(蒋府龙)1, Ya-Yun Liu(刘亚云)1, Zi-Li Xie(谢自立)1, Xiang-Qian Xiu(修向前)1, Xue-Mei Hua(华雪梅)1, Yi Shi(施毅)1, Rong Zhang(张荣)1, You-Liao Zheng(郑有炓)1 |
1. Key Laboratory of Advanced Photonic and Electronic Materials, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China; 2. Nanjing University Institute of Optoelectronics at Yangzhou, Yangzhou 225009, China |
|
|
Abstract A new approach to fabricating high-quality AlInGaN film as a lattice-matched barrier layer in multiple quantum wells (MQWs) is presented. The high-quality AlInGaN film is realized by growing the AlGaN/InGaN short period superlattices through metalorganic chemical vapor deposition, and then being used as a barrier in the MQWs. The crystalline quality of the MQWs with the lattice-matched AlInGaN barrier and that of the conventional InGaN/GaN MQWs are characterized by x-ray diffraction and scanning electron microscopy. The photoluminescence (PL) properties of the InGaN/AlInGaN MQWs are investigated by varying the excitation power density and temperature through comparing with those of the InGaN/GaN MQWs. The integral PL intensity of InGaN/AlInGaN MQWs is over 3 times higher than that of InGaN/GaN MQWs at room temperature under the highest excitation power. Temperature-dependent PL further demonstrates that the internal quantum efficiency of InGaN/AlInGaN MQWs (76.1%) is much higher than that of InGaN/GaN MQWs (21%). The improved luminescence performance of InGaN/AlInGaN MQWs can be attributed to the distinct reduction of the barrier-well lattice mismatch and the strain-induced non-radiative recombination centers.
|
Received: 22 July 2016
Revised: 18 October 2016
Accepted manuscript online:
|
PACS:
|
78.55.Cr
|
(III-V semiconductors)
|
|
78.67.Pt
|
(Multilayers; superlattices; photonic structures; metamaterials)
|
|
78.67.De
|
(Quantum wells)
|
|
78.55.-m
|
(Photoluminescence, properties and materials)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61274003, 61422401, 51461135002, and 61334009), the Natural Science Foundation of Jiangsu Province, China (Grant Nos. BY2013077, BK20141320, BE2015111, and BK20161324), the Program for New Century Excellent Talents in University, China (Grant No. NCET-11-0229), and the Special Semiconductor Materials and Devices Research Funds from State Grid Shandong Electric Power Company, China. |
Corresponding Authors:
Peng Chen
E-mail: pchen@nju.edu.cn
|
Cite this article:
Feng Xu(徐峰), Peng Chen(陈鹏), Fu-Long Jiang(蒋府龙), Ya-Yun Liu(刘亚云), Zi-Li Xie(谢自立), Xiang-Qian Xiu(修向前), Xue-Mei Hua(华雪梅), Yi Shi(施毅), Rong Zhang(张荣), You-Liao Zheng(郑有炓) High-efficiency InGaN/AlInGaN multiple quantum wells with lattice-matched AlInGaN superlattices barrier 2017 Chin. Phys. B 26 017803
|
[1] |
Tu P M, Chang C Y, Huang S C, Chiu C H, Chang J R, Chang W T, Wuu D S, Zan H W, Lin C C, Kuo H C and Hsu C P 2011 Appl. Phys. Lett. 98 211107
|
[2] |
Neugebauer S, Metzner S, Bläsing J, Bertram F, Dadgar A, Christen J and Strittmatter A 2015 Physica. Status. Solidi. (b) 253 118
|
[3] |
Liu J Z, Lin C H, Lee K Y, Wang Y L, Liao C L, Chang Y F, Ho C L and Wu M C 2015 IEEE J. Quantum. Elect. 51 1
|
[4] |
Zhu M, Zhang X, Wang S, Yang H Q and Cui Y P 2014 J. Mater. Sci.-Mater. El. 26 705
|
[5] |
Lee S N, Paek H S, Kim H, Kima K K, Chob Y H, Janga T and Parka Y 2008 J. Cryst. Growth 310 3881
|
[6] |
Shang J S, Zhang B P, Mao M H, Cai L E, Zhang J Y, Fang Z L, Liu B L, Yu J Z, Wang Q M, Kusakabec K and Ohkawa K 2009 J. Cryst. Growth 311 474
|
[7] |
Jones L M, Fagan S and Mair E A 2014 Appl. Phys. Lett. 104 051258
|
[8] |
Broeck D M V D, Bharrat D, Hosalli A M, El-Masry N A and Bedair S M 2014 Appl. Phys. Lett. 105 3
|
[9] |
Wang F, Li S S, Xia J B and Jiang H X 2007 Appl. Phys. Lett. 91 061125
|
[10] |
Cai J H, Sun H Q, Zhen H, Zhang P J and Guo Z Y 2014 Chin. Phys. B 23 630
|
[11] |
YU T J, Pan Y B, Yang Z J, Xu K and Zhang G Y 2007 J. Cryst. Growth 298 211
|
[12] |
Pan Y B, Yu T J, Yang Z J, Wang H, Qin Z X, Hu X D, Wang K, Yao S D and Zhang G Y 2007 J. Cryst. Growth 298 341
|
[13] |
Liu Y, Egawa T, Ishikawa H and Jimbo T 2003 J. Cryst. Growth 259 245
|
[14] |
Liu J P, Zhang B S, Wu M, Li D B, Zhang J C, Jin R Q, Zhu J J, Chen J, Wang J F, Wang Y T and Yang H 2004 J. Cryst. Growth 260 388
|
[15] |
Soh C B, Chua S J, Liu W, Lai M Y and Tripathy S 2005 Solid. State. Commun. 136 421
|
[16] |
Liu Q J, Shao Y, Wu Z L, Xu Z, Xu F, Liu B, Xie Z L and Chen P 2009 Acta Phys. Sin. 58 7194
|
[17] |
Moram M A and Vickers M E 2009 Rep. Prog. Phys. 72 036502
|
[18] |
Nishinaka J, Funato M, Kido R and Kawakami Y 2016 Phys. Status. Solidi 253 78
|
[19] |
Xiong J Y, Xu Y Q, Zhao F, Song J J, Ding B B, Zheng S W, Zhang T and Fan G H 2013 Chin. Phys. B 22 108505
|
[20] |
Watababe K, Yang J R, Huang S Y, Inoke K, Hsu J T, Tu R C, Yamazaki T, Nakanishi N and Shiojiri M 2003 Appl. Phys. Lett. 82 718
|
[21] |
Liu W, Soh CB, Chen P and Chua S J 2004 J. Cryst. Growth 268 509
|
[22] |
Liu Z H, Zhang L L, Li Q F, Zhang R, Xiu X Q, Xie Z L and Shan Y 2014 Acta Phys. Sin. 63 207304(in Chinese)
|
[23] |
Chen G F, Tan X D, Wan W T, Shen J, Hao Q Y, Tang C C, Zhu J J, Liu Z S, Zhao D G and Zhang S M 2011 Acta Phys. Sin. 60 076104(in Chinese)
|
[24] |
Cao W Y, He Y F, Chen Z, Yang W, Du W M and Hu X D 2013 Chin. Phys. B 22 076803
|
[25] |
Yu E T and Manasreh O 2002 III-V Nitride Semiconductors:Applications and Devices (CRC Press) pp. 17-22
|
[26] |
Chen P, Chen A, Chua S J and Tan J N 2007 Adv. Mater. 19 1707
|
[27] |
Zhang J P, Yang J, Simin G, Shatalov M, Khan M A, Shur M S and Gaska R 2000 Appl. Phys. Lett. 77 2668
|
[28] |
Wang T, Bai J, Sakai S and Ho J K 2001 Appl. Phys. Lett. 78 2617
|
[29] |
Meneghini M, Grassa M L, Vaccari S, Galler B, Zeisel R, Drechsel P, Hahn B, Meneghesso G and Zanoni E 2014 Appl. Phys. Lett. 104 113505
|
[30] |
Gotz W, Johnson N M, Chen C, Liu H, Kuo C and Imler W 1996 Appl. Phys. Lett. 68 3144
|
[31] |
Lai Y L, Liu C P, Lin Y H, Hsuch T H, Lin R M, Lyu D Y, Peng Z X and Lin T Y 2006 Nanotechnology 17 3734
|
[32] |
Yoichi Y, Kazuto I, Takahiro K, Naohiko S, Tsunemasa T, Hiromitsu K and Hiroaki O 2008 J. Light & Vis. Env. 32 191
|
[33] |
Wang X S, Ji Z W, Wang H N, Xu M S, Xu X G, Lu Y J and Feng Z H 2014 Acta Phys. Sin. 63 127801(in Chinese)
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|