Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(1): 017804    DOI: 10.1088/1674-1056/26/1/017804
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Roles of voltage in semi-insulating GaAs photoconductive semiconductor switch

Hai-Juan Cui(崔海娟)1, Hong-Chun Yang(杨宏春)1, Jun Xu(徐军)1, Yu-Ming Yang(杨宇明)2, Zi-Xian Yang(杨子贤)1
1. School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054, China;
2. School of Mathematical Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
Abstract  An experimental study of leakage current is presented in a semi-insulating (SI) GaAs photoconductive semiconductor switch (PCSS) with voltages up to 5.8 kV (average field is 19.3 kV/cm). The leakage current increases nonlinearly with the bias voltage increasing from 1.2×10-9 A to 3.6×10-5 A. Furthermore, the dark resistance, which is characterized as a function of electric field, does not monotonically decrease with the field but displays several distinct regimes. By eliminating the field-dependent drift velocity, the free-electron density n is extracted from the current, and then the critical field for each region of n(E) characteristic of PCSS is obtained. It must be the electric field that provides the free electron with sufficient energy to activate the carrier in the trapped state via multiple physical mechanisms, such as impurity ionization, field-dependent EL2 capture, and impact ionization of donor centers EL10 and EL2. The critical fields calculated from the activation energy of these physical processes accord well with the experimental results. Moreover, agreement between the fitting curve and experimental data of J(E), further confirms that the dark-state characteristics are related to these field-dependent processes. The effects of voltage on SI-GaAs PCSS may give us an insight into its physical mechanism.
Keywords:  photoconductive semiconductor switch      leakage current      dark resistance      nonlinear characteristics  
Received:  29 August 2016      Revised:  17 October 2016      Accepted manuscript online: 
PACS:  78.56.-a (Photoconduction and photovoltaic effects)  
  78.30.Fs (III-V and II-VI semiconductors)  
  73.20.Hb (Impurity and defect levels; energy states of adsorbed species)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 31470822) and the Advanced Research Foundation of China (Grant Nos. 9140A05030114DZ02068, 9140A07030514DZ02101, and 9140A07010715DZ02001).
Corresponding Authors:  Hai-Juan Cui     E-mail:  haijuan_cui@uestc.edu.cn

Cite this article: 

Hai-Juan Cui(崔海娟), Hong-Chun Yang(杨宏春), Jun Xu(徐军), Yu-Ming Yang(杨宇明), Zi-Xian Yang(杨子贤) Roles of voltage in semi-insulating GaAs photoconductive semiconductor switch 2017 Chin. Phys. B 26 017804

[1] Wang W, Xia L, Chen Y, Liu Y, Yang C, Ye M and Deng J 2015 Appl. Phys. Lett. 106 022108
[2] Zutavern F J, Loubriel G M, O'Malley M W, Shanwald L P, Helgeson W D, Mclaughlin D L and Mckenzie B B 1990 IEEE Trans. Electr. Dev. 37 2472
[3] Shi W, Zhang Z and Hou L 2010 Chin. Phys. Lett. 27 087203
[4] Zhang T, Liu K, Gao S and Shi Y 2015 IEEE Trans. Dielectr. Electr. Insul. 22 1191
[5] Shi W, Jiang H, Li M, Ma C, Gui H, Wang L, Xue P, Fu Z and Cao J 2014 Appl. Phys. Lett. 104 042108
[6] Zutavern F J, Loubriel G M, McLaughlin D L, Helgeson W D and O'Malley M W 1992 SPIE 1632 152
[7] Lin G R and Pan C L 2000 Opt. Quant. Electron. 32 553
[8] Zheng X, Fan S, Chen Y, Kang D, Zhang J, Wang C, Mo J, Li L, Ma X, Zhang J and Hao Y 2015 Chin. Phys. B 24 027302
[9] Li W, Liu D and Zhang H 2014 Acta Phys. Sin. 63 227303(in Chinese)
[10] Davanloo F, Collins C B and Agee F J 2002 IEEE Trans. on Plasma Sci. 30 1897
[11] Adams J C, Falk R A, Capps C D and Ferrier S 1992 SPIE 1632 110
[12] Saxce T D 1992 SPIE 1632 167
[13] Zamdmer N, Hu Q, Mclntosh K A and Verghese S 1999 Appl. Phys. Lett. 75 2313
[14] Wang B, Liu K and Qiu J 2013 IEEE Trans. Dielectr. Electr. Insul. 20 1287
[15] Amari S E, Angelis A D, Arnaud-cormos D, Couderc V and Leveque P 2011 IEEE Photon. Tech. Lett. 23 673
[16] Yang H, Cui H and Wu M 2010 Chinese Sci. Bull. 55 1331
[17] Sze S M 2007 Transferred-electron Devices in Physics of Semiconductor Devices, 3rd ed. (Hoboken:Wiley) pp. 511-516
[18] Kroemer H 1967 IEEE Trans. Electron Dev. 14 476
[19] Kaminska M, Parsey J M, Lagowski J and Gatos H C 1982 Appl. Phy. Lett. 41 989
[20] Willing B and Maan J C 1996 J. Phys.:Condens. Matter 8 7493
[21] Pizza F, Chiristianen P C M and Maan J C 1996 Appl. Phys. Lett. 69 1909
[22] Paracchini C and Dallacasa V 1989 Solid State Commun. 69 49
[23] Look D C and Fang Z Q 1999 Solid State Electron. 43 1317
[24] Albuquerque H A, Oliveira A G de, Ribeiro G M, Silva R L da, Rodrigues W N, Moreira M V B and Rubinger R M 2003 J. Appl. Phys. 93 1647
[25] Cui H, Yang H, Xu J, Yang Z and Yang Y 2016 IEEE Eelctron. Device Lett. Accepted
[26] Shi W and Ma X 2011 Chin. Phys. Lett. 28 124201
[1] Effect of nonlinear translations on the pulsation of cavitation bubbles
Lingling Zhang(张玲玲), Weizhong Chen(陈伟中), Yang Shen(沈阳), Yaorong Wu(武耀蓉), Guoying Zhao(赵帼英), and Shaoyang Kou(寇少杨). Chin. Phys. B, 2022, 31(4): 044303.
[2] A novel Si-rich SiN bilayer passivation with thin-barrier AlGaN/GaN HEMTs for high performance millimeter-wave applications
Zhihong Chen(陈治宏), Minhan Mi(宓珉瀚), Jielong Liu(刘捷龙), Pengfei Wang(王鹏飞), Yuwei Zhou(周雨威), Meng Zhang(张濛), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(11): 117105.
[3] Effect of annealing temperature on interfacial and electrical performance of Au-Pt-Ti/HfAlO/InAlAs metal-oxide-semiconductor capacitor
He Guan(关赫), Cheng-Yu Jiang(姜成语), Shao-Xi Wang(王少熙). Chin. Phys. B, 2020, 29(9): 096701.
[4] Evaluation of polarization field in InGaN/GaN multiple quantum well structures by using electroluminescence spectra shift
Ping Chen(陈平), De-Gang Zhao(赵德刚), De-Sheng Jiang(江德生), Jing Yang(杨静), Jian-Jun Zhu(朱建军), Zong-Shun Liu(刘宗顺), Wei Liu(刘炜), Feng Liang(梁锋), Shuang-Tao Liu(刘双韬), Yao Xing(邢瑶), Li-Qun Zhang(张立群). Chin. Phys. B, 2020, 29(3): 034206.
[5] Improved interfacial properties of HfGdON gate dielectric Ge MOS capacitor by optimizing Gd content
Lin Zhou(周琳), Lu Liu(刘璐), Yu-Heng Deng(邓煜恒), Chun-Xia Li(李春霞), Jing-Ping Xu(徐静平). Chin. Phys. B, 2019, 28(12): 127703.
[6] Effect of SiN: Hx passivation layer on the reverse gate leakage current in GaN HEMTs
Sheng Zhang(张昇), Ke Wei(魏珂), Yang Xiao(肖洋), Xiao-Hua Ma(马晓华), Yi-Chuan Zhang(张一川), Guo-Guo Liu(刘果果), Tian-Min Lei(雷天民), Ying-Kui Zheng(郑英奎), Sen Huang(黄森), Ning Wang(汪宁), Muhammad Asif, Xin-Yu Liu(刘新宇). Chin. Phys. B, 2018, 27(9): 097309.
[7] Intrinsic relationship between photoluminescence and electrical characteristics in modulation Fe-doped AlGaN/GaN HEMTs
Jianfei Li(李建飞), Yuanjie Lv(吕元杰), Changfu Li(李长富), Ziwu Ji(冀子武), Zhiyong Pang(庞智勇), Xiangang Xu(徐现刚), Mingsheng Xu(徐明升). Chin. Phys. B, 2017, 26(9): 098504.
[8] Stress-induced leakage current characteristics of PMOS fabricated by a new multi-deposition multi-annealing technique with full gate last process
Yanrong Wang(王艳蓉), Hong Yang(杨红), Hao Xu(徐昊), Weichun Luo(罗维春), Luwei Qi(祁路伟), Shuxiang Zhang(张淑祥), Wenwu Wang(王文武), Jiang Yan(闫江), Huilong Zhu(朱慧珑), Chao Zhao(赵超), Dapeng Chen(陈大鹏), Tianchun Ye(叶甜春). Chin. Phys. B, 2017, 26(8): 087304.
[9] Bubble acoustical scattering cross section under multi-frequency acoustic excitation
Jie Shi(时洁), De-sen Yang(杨德森), Hao-yang Zhang(张昊阳), Sheng-guo Shi(时胜国), Song Li(李松), Bo Hu(胡博). Chin. Phys. B, 2017, 26(7): 074301.
[10] On the reverse leakage current of Schottky contacts on free-standing GaN at high reverse biases
Yong Lei(雷勇), Jing Su(苏静), Hong-Yan Wu(吴红艳), Cui-Hong Yang(杨翠红), Wei-Feng Rao(饶伟锋). Chin. Phys. B, 2017, 26(2): 027105.
[11] Effects of fluorine-based plasma treatment and thermal annealing on high-Al content AlGaN Schottky contact
Fang Liu(刘芳), Zhixin Qin(秦志新). Chin. Phys. B, 2016, 25(11): 117304.
[12] Modified model of gate leakage currents in AlGaN/GaN HEMTs
Yuan-Gang Wang(王元刚), Zhi-Hong Feng(冯志红), Yuan-Jie Lv(吕元杰), Xin Tan(谭鑫), Shao-Bo Dun(敦少博), Yu-Long Fang(房玉龙), Shu-Jun Cai(蔡树军). Chin. Phys. B, 2016, 25(10): 107106.
[13] High performance trench MOS barrier Schottky diode with high-k gate oxide
Zhai Dong-Yuan (翟东媛), Zhu Jun (朱俊), Zhao Yi (赵毅), Cai Yin-Fei (蔡银飞), Shi Yi (施毅), Zheng You-Liao (郑有炓). Chin. Phys. B, 2015, 24(7): 077201.
[14] Application of an Al-doped zinc oxide subcontact layer on vanadium-compensated 6H-SiC photoconductive switches
Zhou Tian-Yu (周天宇), Liu Xue-Chao (刘学超), Huang Wei (黄维), Dai Chong-Chong (代冲冲), Zheng Yan-Qing (郑燕青), Shi Er-Wei (施尔畏). Chin. Phys. B, 2015, 24(4): 044209.
[15] Transport mechanism of reverse surface leakage current in AlGaN/GaN high-electron mobility transistor with SiN passivation
Zheng Xue-Feng (郑雪峰), Fan Shuang (范爽), Chen Yong-He (陈永和), Kang Di (康迪), Zhang Jian-Kun (张建坤), Wang Chong (王冲), Mo Jiang-Hui (默江辉), Li Liang (李亮), Ma Xiao-Hua (马晓华), Zhang Jin-Cheng (张进成), Hao Yue (郝跃). Chin. Phys. B, 2015, 24(2): 027302.
No Suggested Reading articles found!