CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Temperature-dependent photoluminescence on organic-inorganicmetal halide perovskite CH3NH3PbI3-xClx prepared onZnO/FTO substrates using a two-step method |
Shiwei Zhuang(庄仕伟), Deqian Xu(徐德前), Jiaxin Xu(徐佳新), Bin Wu(伍斌), Yuantao Zhang(张源涛), Xin Dong(董鑫), Guoxing Li(李国兴), Baolin Zhang(张宝林), Guotong Du(杜国同) |
State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China |
|
|
Abstract Temperature-dependent photoluminescence characteristics of organic-inorganic halide perovskite CH3NH3PbI3-xClx films prepared using a two-step method on ZnO/FTO substrates were investigated. Surface morphology and absorption characteristics of the films were also studied. Scanning electron microscopy revealed large crystals and substrate coverage. The orthorhombic-to-tetragonal phase transition temperature was ~140 K. The films' exciton binding energy was 77.6±10.9 meV and the energy of optical phonons was 38.8±2.5 meV. These results suggest that perovskite CH3NH3PbI3-xClx films have excellent optoelectronic characteristics which further suggests their potential usage in perovskitebased optoelectronic devices.
|
Received: 27 August 2016
Revised: 13 October 2016
Accepted manuscript online:
|
|
Fund: Project supported by the International Science and Technology Cooperation Program of Science and Technology Bureau of Changchun City, China (Grant No. 12ZX68). |
Corresponding Authors:
Baolin Zhang
E-mail: zbl@jlu.edu.cn
|
Cite this article:
Shiwei Zhuang(庄仕伟), Deqian Xu(徐德前), Jiaxin Xu(徐佳新), Bin Wu(伍斌), Yuantao Zhang(张源涛), Xin Dong(董鑫), Guoxing Li(李国兴), Baolin Zhang(张宝林), Guotong Du(杜国同) Temperature-dependent photoluminescence on organic-inorganicmetal halide perovskite CH3NH3PbI3-xClx prepared onZnO/FTO substrates using a two-step method 2017 Chin. Phys. B 26 017802
|
[1] |
Xing G, Mathews N, Lim S S, Yantara N, Liu X, Sabba D, Gratzel M, Mhaisalkar S and Sum T C 2014 Nat. Mater. 13 476
|
[2] |
Oga H, Saeki A, Ogomi Y, Hayase S and Seki S 2014 J. Am. Chem. Soc. 136 13818
|
[3] |
Kuppler R J, Timmons D J, Fang Q R, Li J R, Makal T A, Young M D, Yuan D Q, Zhao D, Zhuang W J and Zhou H C 2009 Coordin. Chem. Rev. 253 3042
|
[4] |
Plank N O V, Howard I, Rao A, Wilson M W B, Ducati C, Mane R S, Bendall J S, Louca R R M, Greenham N C, Miura H, Friend R H, Snaith H J and Welland M E 2009 J. Phys. Chem. C 113 18515
|
[5] |
Bi D Q, Wu F, Qu Q Y, Yue W J, Cui Q, Shen W, Chen R Q, Liu C W, Qiu Z L and Wang M T 2011 J. Phys. Chem. C 115 3745
|
[6] |
Chen Q Y, Huang Y, Huang P R, Ma T, Cao C and He Y 2016 Chin. Phys. B 25 027104
|
[7] |
Li J F, Zhao C, Zhang H, Tong J F, Zhang P, Yang C Y, Xia Y J and Fan D W 2016 Chin. Phys. B 25 028402
|
[8] |
Kojima K T A, Shirai Y and Miyasaka T 2009 J. Am. Chem. Soc. 131 6050
|
[9] |
Zhang T K, Yu T and Zou Z G 2015 Physics 44 315
|
[10] |
Jeon N J, Noh J H, Yang W S, Kim Y C, Ryu S, Seo J and Seok S I 2015 Nature 517 476
|
[11] |
Hu X, Zhang X D, Liang L, Bao J, Li S, Yang W L and Xie Y 2014 Adv. Funct. Mater. 24 7373
|
[12] |
Fang H H, Raissa R, Abdu-Aguye M, Adjokatse S, Blake G R, Even J and Loi M A 2015 Adv. Funct. Mater. 25 2378
|
[13] |
Tan Z K, Moghaddam R S, Lai M L, Docampo P, Higler R, Deschler F, Price M, Sadhanala A, Pazos L M, Credgington D, Hanusch F, Bein T, Snaith H J and Friend R H 2014 Nat. Nanotechnol. 9 687
|
[14] |
Huang M H, Mao S, Feick H, Yan H Q, Wu Y Y, Kind H, Weber E, Russo R and Yang P D 2001 Science 292 1897
|
[15] |
He T, Xia Y J, Qin H C, Guan Z S and Li W Y 2011 Physics 4 0
|
[16] |
Yu X X, Zhou Y, Liu J, Jin H B, Fang X Y and Cao M S 2015 Chin. Phys. B 24 127307
|
[17] |
Shi Z F, Zhang Y T, Cai X P, Wang H, Wu B, Zhang J X, Cui X J, Dong X, Liang H W, Zhang B L and Du G T 2014 Cryst. Eng. Comm. 16 455
|
[18] |
Burschka J, Pellet N, Moon S J, Humphry-Baker R, Gao P, Nazeeruddin M K and Gratzel M 2013 Nature 499 316
|
[19] |
Zheng L L, Ma Y Z, Chu S S, Wang S F, Qu B, Xiao L X, Chen Z J, Gong Q H, Wu Z X and Hou X 2014 Nanoscale 6 8171
|
[20] |
Zheng L, Zhang D, Ma Y, Lu Z, Chen Z, Wang S, Xiao L and Gong Q 2015 Dalton T. 44 10582
|
[21] |
Lee M M, Teuscher J, Miyasaka T, Murakami N T and Snaith H J 2012 Science 338 643
|
[22] |
Jaramillo-Quintero O A, Sanchez R S, Rincon M and Mora-Sero I 2014 J. Phys. Chem. Lett. 6 1883
|
[23] |
Wehrenfennig C, Liu M Z, Snaith H J, Johnston M B and Herz L M 2014 APL Mater. 2 081513
|
[24] |
D'Innocenzo V, Grancini G, Alcocer M J P, Kandada A R S, Stranks S D, Lee M M, Lanzani G, Snaith H J and Petrozza A 2014 Nat. Commun. 5 3586
|
[25] |
Kao T S, Chou Y H, Chou C H, Chen F C and Lu T C 2014 Appl. Phys. Lett. 105 231108
|
[26] |
Savenije T J, Ponseca C S, Kunneman L, Abdellah M, Zheng K, Tian Y, Zhu Q, Canton S E, Scheblykin I G, Pullerits T, Yartsev A and Sundstrom V 2014 J. Phys. Chem. Lett. 5 2189
|
[27] |
Georgiev T and Baleva G L M 1990 J. Phys.:Condens. Matter 1 2935
|
[28] |
Wu K, Bera A, Ma C, Du Y M, Yang Y, Li L and Wu T 2014 Phys. Chem. Chem. Phys. 16 22476
|
[29] |
Quarti C, Grancini G, Mosconi E, Bruno P, Ball J M, Lee M M, Snaith H J, Petrozza A and Angelis F D 2014 J. Phys. Chem. Lett. 5 279
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|