Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(9): 094201    DOI: 10.1088/1674-1056/25/9/094201
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Model of bidirectional reflectance distribution function for metallic materials

Kai Wang(王凯)1, Jing-Ping Zhu(朱京平)1, Hong Liu(刘宏)1,2, Xun Hou(侯洵)1
1. Key Laboratory for Physical Electronics and Devices of Ministry of Education and Shaanxi Key Laboratory of Information Photonic Technique, Xi'an Jiaotong University, Xi'an 710049, China;
2. The State Key Laboratory of Astronautic Dynamics, Xi'an Satellite Control Center, Xi'an 710043, China
Abstract  Based on the three-component assumption that the reflection is divided into specular reflection, directional diffuse reflection, and ideal diffuse reflection, a bidirectional reflectance distribution function (BRDF) model of metallic materials is presented. Compared with the two-component assumption that the reflection is composed of specular reflection and diffuse reflection, the three-component assumption divides the diffuse reflection into directional diffuse and ideal diffuse reflection. This model effectively resolves the problem that constant diffuse reflection leads to considerable error for metallic materials. Simulation and measurement results validate that this three-component BRDF model can improve the modeling accuracy significantly and describe the reflection properties in the hemisphere space precisely for the metallic materials.
Keywords:  bidirectional reflectance distribution function      metallic materials      scattering  
Received:  24 December 2015      Revised:  29 April 2016      Accepted manuscript online: 
PACS:  42.25.Gy (Edge and boundary effects; reflection and refraction)  
  78.20.Bh (Theory, models, and numerical simulation)  
  78.66.Bz (Metals and metallic alloys)  
Corresponding Authors:  Jing-Ping Zhu     E-mail:  jpzhu@mail.xjtu.edu.cn

Cite this article: 

Kai Wang(王凯), Jing-Ping Zhu(朱京平), Hong Liu(刘宏), Xun Hou(侯洵) Model of bidirectional reflectance distribution function for metallic materials 2016 Chin. Phys. B 25 094201

[1] Georgiev G T, Gatebe C K, Butler J J and King M D 2006 SPIE Optics+ Photonics, International Society for Optics and Photonics, p. 629603
[2] Wang O, Gunawardane P, Scher S and Davis J 2009 Computer Vision and Pattern Recognition, IEEE, p. 2805
[3] Otremba Z and Piskozub J 2004 Opt. Express 12 1671
[4] Bai L, Wu Z S, Cao Y H and Huang X 2014 Opt. Express 22 8515
[5] Montes Soldado R and Ureña Almagro C 2012
[6] Westlund H B and Meyer G W 2002 Proceedigs - Graphics Interface, May 27-29, 2002, Calgary, Canada, pp. 189-200
[7] Guo R P and Tao Z S 2009 Optics & Lasers in Engineering 47 1205
[8] Luo W, Zhang M, Zhou P and Yin H C 2010 Chin. Phys. B 19 084102
[9] Torrance K E and Sparrow 1967 J. Opt. Soc. Am. 57 1105
[10] Phong B T 1975 Communications of the ACM 18 311
[11] Cook R L and Torrance K E 1982 ACM Transactions on Graphics 1 7
[12] Xiao D H, Kenneth E T and Fraveois X S 1991 Computer Graphics 25 175
[13] Cao Y H,Wu Z S, Zhang H L, Wei Q N and Wang S M 2008 Acta Opt. Sin. 28 792 (in Chinese)
[14] Wang A Q, Guo L X and Chai C 2011 Chin. Phys. B 20 050202
[15] Wu Z S and Dou Y H 2003 Acta Opt. Sin. 23 1250 (in Chinese)
[16] Lu J, Wang J B and Sun G C 2009 Chin. Phys. B 18 1598
[17] Guo L X, Gou X Y and Zhang L B 2014 Chin. Phys. B 23 114102
[18] Bai L, Wu Z S, Zou X R and Cao Y H 2012 Opt. Express 20 12085
[19] Wang H Y, Zhang W and Dong A 2013 Measurement 46 3654
[20] Nicodemus F E 1970 Appl. Opt. 9 1474
[21] Blinn J F 1977 ACM SIGGRAPH Computer Graphics 11 192
[1] Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivity θ-phase TaN
Chao Wu(吴超), Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(4): 046502.
[2] Impact of amplified spontaneous emission noise on the SRS threshold of high-power fiber amplifiers
Wei Liu(刘伟), Shuai Ren(任帅), Pengfei Ma(马鹏飞), and Pu Zhou(周朴). Chin. Phys. B, 2023, 32(3): 034202.
[3] Floquet scattering through a parity-time symmetric oscillating potential
Xuzhen Cao(曹序桢), Zhaoxin Liang(梁兆新), and Ying Hu(胡颖). Chin. Phys. B, 2023, 32(3): 030302.
[4] Temperature and strain sensitivities of surface and hybrid acoustic wave Brillouin scattering in optical microfibers
Yi Liu(刘毅), Yuanqi Gu(顾源琦), Yu Ning(宁钰), Pengfei Chen(陈鹏飞), Yao Yao(姚尧),Yajun You(游亚军), Wenjun He(贺文君), and Xiujian Chou(丑修建). Chin. Phys. B, 2022, 31(9): 094208.
[5] Elastic electron scattering with CH2Br2 and CCl2Br2: The role of the polarization effects
Xiaoli Zhao(赵小利) and Kedong Wang(王克栋). Chin. Phys. B, 2022, 31(8): 083402.
[6] Integral cross sections for electron impact excitations of argon and carbon dioxide
Shu-Xing Wang(汪书兴) and Lin-Fan Zhu(朱林繁). Chin. Phys. B, 2022, 31(8): 083401.
[7] Structural evolution and bandgap modulation of layered β-GeSe2 single crystal under high pressure
Hengli Xie(谢恒立), Jiaxiang Wang(王家祥), Lingrui Wang(王玲瑞), Yong Yan(闫勇), Juan Guo(郭娟), Qilong Gao(高其龙), Mingju Chao(晁明举), Erjun Liang(梁二军), and Xiao Ren(任霄). Chin. Phys. B, 2022, 31(7): 076101.
[8] SERS activity of carbon nanotubes modified by silver nanoparticles with different particle sizes
Xiao-Lei Zhang(张晓蕾), Jie Zhang(张洁), Yuan Luo(罗元), and Jia Ran(冉佳). Chin. Phys. B, 2022, 31(7): 077401.
[9] Switchable directional scattering based on spoof core—shell plasmonic structures
Yun-Qiao Yin(殷允桥), Hong-Wei Wu(吴宏伟), Shu-Ling Cheng(程淑玲), and Zong-Qiang Sheng(圣宗强). Chin. Phys. B, 2022, 31(5): 054101.
[10] Effects of Landau damping and collision on stimulated Raman scattering with various phase-space distributions
Shanxiu Xie(谢善秀), Yong Chen(陈勇), Junchen Ye(叶俊辰), Yugu Chen(陈雨谷), Na Peng(彭娜), and Chengzhuo Xiao(肖成卓). Chin. Phys. B, 2022, 31(5): 055201.
[11] Small-angle neutron scattering study on the stability of oxide nanoparticles in long-term thermally aged 9Cr-oxide dispersion strengthened steel
Peng-Lin Gao(高朋林), Jian Gong(龚建), Qiang Tian(田强), Gung-Ai Sun(孙光爱), Hai-Yang Yan(闫海洋),Liang Chen(陈良), Liang-Fei Bai(白亮飞), Zhi-Meng Guo(郭志猛), and Xin Ju(巨新). Chin. Phys. B, 2022, 31(5): 056102.
[12] Oscillator strength study of the excitations of valence-shell of C2H2 by high-resolution inelastic x-ray scattering
Qiang Sun(孙强), Ya-Wei Liu(刘亚伟), Yuan-Chen Xu(徐远琛), Li-Han Wang(王礼涵), Tian-Jun Li(李天钧), Shu-Xing Wang(汪书兴), Ke Yang(杨科), and Lin-Fan Zhu(朱林繁). Chin. Phys. B, 2022, 31(5): 053401.
[13] Post-solitons and electron vortices generated by femtosecond intense laser interacting with uniform near-critical-density plasmas
Dong-Ning Yue(岳东宁), Min Chen(陈民), Yao Zhao(赵耀), Pan-Fei Geng(耿盼飞), Xiao-Hui Yuan(远晓辉), Quan-Li Dong(董全力), Zheng-Ming Sheng(盛政明), and Jie Zhang(张杰). Chin. Phys. B, 2022, 31(4): 045205.
[14] Characterization of premixed swirling methane/air diffusion flame through filtered Rayleigh scattering
Meng Li(李猛), Bo Yan(闫博), Shuang Chen(陈爽), Li Chen(陈力), and Jin-He Mu(母金河). Chin. Phys. B, 2022, 31(3): 034702.
[15] High-pressure Raman study of osmium and rhenium up to 200 GPa and pressure dependent elastic shear modulus C44
Jingyi Liu(刘静仪), Yu Tao(陶雨), Chunmei Fan(范春梅), Binbin Wu(吴彬彬), Qiqi Tang(唐琦琪), and Li Lei(雷力). Chin. Phys. B, 2022, 31(3): 037801.
No Suggested Reading articles found!