Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(9): 094101    DOI: 10.1088/1674-1056/25/9/094101
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Ultra-thin single-layer transparent geometrical phase gradient metasurface and its application to high-gain circularly-polarized lens antenna

Tang-Jing Li(李唐景), Jian-Gang Liang(梁建刚), Hai-Peng Li(李海鹏), Ya-Qiao Liu(刘亚峤)
Air and Missile Defense College, Air Force Engineering University, Xi'an 710051, China
Abstract  A new method to design an ultra-thin high-gain circularly-polarized antenna system with high efficiency is proposed based on the geometrical phase gradient metasurface (GPGM). With an accuracy control of the transmission phase and also the high transmission amplitude, the GPGM is capable of manipulating an electromagnetic wave arbitrarily. A focusing transmission lens working at Ku band is well optimized with the F/D of 0.32. A good focusing effect is demonstrated clearly by theoretical calculation and electromagnetic simulation. For further application, an ultra-thin single-layer transmissive lens antenna based on the proposed focusing metasurface operating at 13 GHz is implemented and launched by an original patch antenna from the perspective of high integration, simple structure, and low cost. Numerical and experimental results coincide well, indicating the advantages of the antenna system, such as a high gain of 17.6 dB, the axis ratio better than 2 dB, a high aperture efficiency of 41%, and also a simple fabrication process based on the convenient print circuit board technology. The good performance of the proposed antenna indicates promising applications in portable communication systems.
Keywords:  geometrical phase gradient metasurface      circular polarization      lens antenna  
Received:  03 March 2016      Revised:  06 May 2016      Accepted manuscript online: 
PACS:  41.20.Jb (Electromagnetic wave propagation; radiowave propagation)  
  29.27.Hj (Polarized beams)  
  84.40.Ba (Antennas: theory, components and accessories)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61372034).
Corresponding Authors:  Tang-Jing Li     E-mail:  litangjing666@sina.com

Cite this article: 

Tang-Jing Li(李唐景), Jian-Gang Liang(梁建刚), Hai-Peng Li(李海鹏), Ya-Qiao Liu(刘亚峤) Ultra-thin single-layer transparent geometrical phase gradient metasurface and its application to high-gain circularly-polarized lens antenna 2016 Chin. Phys. B 25 094101

[1] Yu N F, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F and Gaburro Z 2011 Science 334 333
[2] Cai T, Wang G M, Zhang X F, Wang Y W, Zong B F and Xu H X 2015 IEEE Trans. Antennas Propag. 63 2306
[3] Chen P Y and Alú A 2011 Phys. Rev. B 84 205110
[4] Chen P Y, Argyropoulos C and Alú A 2013 Phys. Rev. Lett. 111 233001
[5] Li Y F, Zhang J Q, Qu S B, Wang J F, Wu X, Xu Z and Zhang A X 2015 Acta Phys. Sin. 64 124102 (in Chinese)
[6] Saeidi C and Weide D 2014 Appl. Phys. Lett. 105 053107
[7] Li X, Xiao S Y, Cai B G, He Q, Cui T J and Zhou L 2012 Opt. Lett. 37 4940
[8] Kuznetsov S A, Astafev M A, Beruete M and Cía M N 2015 Sci. Rep. 5 7738
[9] Cai B G, Li Y B, Jiang W X, Cheng Q and Cui T J 2015 Opt. Express 23 7593
[10] Lee J H, Yoon J W, Jung J, Hong J K, Song S H and Magnusson R 2014 Appl. Phys. Lett. 104 233505
[11] Cai T, Wang G M, Zhang X F, Liang J G, Zhuang Y Q, Liu D and Xu H X 2015 IEEE Trans. Antennas Propag. 63 5629
[12] Cheng J and Mosallaei H 2014 Opt. Lett. 39 2719
[13] Zhu B O, Zhao J M and Feng Y J 2013 Sci. Rep. 3 3059
[14] Li Y F, Zhang J Q, Qu S B, Wang J F, Zheng L, Zhou H, Xu Z and Zhang A X 2015 Chin. Phys. B 24 014202
[15] Yu J B, Ma H, Wang J F, Feng D M, Li Y F and Qu S B 2015 Acta Phys. Sin. 64 178101 (in Chinese)
[16] Phillion R H and Okoniewski M 2011 IEEE Trans. Antennas Propag. 59 1217
[17] Pfeiffer C and Grbic A 2015 IEEE Trans. Antennas Propag. 63 3248
[18] Cai T, Wang G M, Zhang X F and Shi J P 2015 IEEE Antennas Wirel. Propag. Lett. 14 1072
[1] Ultra-wideband linear-to-circular polarization conversion metasurface
Bao-Qin Lin(林宝勤)†, Lin-Tao Lv(吕林涛), Jian-Xin Guo(郭建新), Zu-Liang Wang(王祖良), Shi-Qi Huang(黄世奇), and Yan-Wen Wang(王衍文). Chin. Phys. B, 2020, 29(10): 104205.
[2] Selection of right-circular-polarized harmonics from p orbital of neon atom by two-color bicircular laser fields
Chang-Long Xia(夏昌龙), Yue-Yue Lan(兰悦跃), Qian-Qian Li(李倩倩), Xiang-Yang Miao(苗向阳). Chin. Phys. B, 2019, 28(10): 103203.
[3] Ultra-thin circularly polarized lens antenna based on single-layered transparent metasurface
Kaiyue Liu(刘凯越), Guangming Wang(王光明), Tong Cai(蔡通), Wenlong Guo(郭文龙), Yaqiang Zhuang(庄亚强), Gang Liu(刘刚). Chin. Phys. B, 2018, 27(8): 084101.
[4] Wideband linear-to-circular polarization conversion realized by a transmissive anisotropic metasurface
Bao-Qin Lin(林宝勤), Jian-Xin Guo(郭建新), Bai-Gang Huang(黄百钢), Lin-Bo Fang(方林波), Peng Chu(储鹏), Xiang-Wen Liu(刘湘雯). Chin. Phys. B, 2018, 27(5): 054204.
[5] Dual-polarized lens antenna based on multimode metasurfaces
Hao-Fang Wang(王浩放), Zheng-Bin Wang(王正斌), Yong Cheng(程勇), Ye-Rong Zhang(张业荣). Chin. Phys. B, 2018, 27(11): 118401.
[6] A novel x-ray circularly polarized ranging method
Song Shi-Bin (宋诗斌), Xu Lu-Ping (许录平), Zhang Hua (张华), Gao Na (高娜), Shen Yang-He (申洋赫). Chin. Phys. B, 2015, 24(5): 057201.
[7] Wide-band circular polarization-keeping reflection mediated by metasurface
Li Yong-Feng (李勇峰), Zhang Jie-Qiu (张介秋), Qu Shao-Bo (屈绍波), Wang Jia-Fu (王甲富), Zheng Lin (郑麟), Zhou Hang (周航), Xu Zhuo (徐卓), Zhang An-Xue (张安学). Chin. Phys. B, 2015, 24(1): 014202.
[8] Imprints of molecular orbitals using photoelectron angular distribution by strong laser pulses of circular polarization
Ren Xiang-He (任向河), Zhang Jing-Tao (张敬涛), Wu Yan (吴艳), Ma Hui (马慧), Xu Yu-Long (许玉龙). Chin. Phys. B, 2013, 22(7): 073304.
[9] Compact and broadband circularly polarized ring antenna with wide beam-width for multiple global navigation satellite systems
Zhang Hong-Lin(张洪林), Hu Bin-Jie(胡斌杰), and Zhang Xiu-Yin(章秀银) . Chin. Phys. B, 2012, 21(2): 027701.
No Suggested Reading articles found!