Special Issue:
TOPICAL REVIEW — Low-dimensional complex oxide structures
|
TOPICAL REVIEW—Low-dimensional complex oxide structures |
Prev
Next
|
|
|
Nanoscale control of low-dimensional spin structures in manganites |
Jing Wang(王静)1, Iftikhar Ahmed Malik1, Renrong Liang(梁仁荣)2, Wen Huang(黄文)3, Renkui Zheng(郑仁奎)4, Jinxing Zhang(张金星)1 |
1 Department of Physics, Beijing Normal University, Beijing 100875, China;
2 Tsinghua National Laboratory for Information Science and Technology, Institute of Microelectronics, Tsinghua University, Beijing 100084, China;
3 School of Microelectronics and Solid-State Electronics, University of Electronic Science and Technology of China, Chengdu 611731, China;
4 State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China |
|
|
Abstract Due to the upcoming demands of next-generation electronic/magnetoelectronic devices with low-energy consumption, emerging correlated materials (such as superconductors, topological insulators and manganites) are one of the highly promising candidates for the applications. For the past decades, manganites have attracted great interest due to the colossal magnetoresistance effect, charge-spin-orbital ordering, and electronic phase separation. However, the incapable of deterministic control of those emerging low-dimensional spin structures at ambient condition restrict their possible applications. Therefore, the understanding and control of the dynamic behaviors of spin order parameters at nanoscale in manganites under external stimuli with low energy consumption, especially at room temperature is highly desired. In this review, we collected recent major progresses of nanoscale control of spin structures in manganites at low dimension, especially focusing on the control of their phase boundaries, domain walls as well as the topological spin structures (e.g., skyrmions). In addition, capacitor-based prototype spintronic devices are proposed by taking advantage of the above control methods in manganites. This capacitor-based structure may provide a new platform for the design of future spintronic devices with low-energy consumption.
|
Received: 31 March 2016
Revised: 18 April 2016
Accepted manuscript online:
|
PACS:
|
75.75.-c
|
(Magnetic properties of nanostructures)
|
|
85.70.-w
|
(Magnetic devices)
|
|
85.75.-d
|
(Magnetoelectronics; spintronics: devices exploiting spin polarized transport or integrated magnetic fields)
|
|
Fund: Project supported by the National Basic Research Program of China (Grant No. 2014CB920902), the National Natural Science Foundation of China (Grant Nos. 61306105 and 51572278), the Information Science and Technology (TNList) Cross-discipline Foundation from Tsinghua National Laboratory, China, and the Fund from the State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, China. |
Corresponding Authors:
Jinxing Zhang
E-mail: jxzhang@bnu.edu.cn
|
Cite this article:
Jing Wang(王静), Iftikhar Ahmed Malik, Renrong Liang(梁仁荣), Wen Huang(黄文), Renkui Zheng(郑仁奎), Jinxing Zhang(张金星) Nanoscale control of low-dimensional spin structures in manganites 2016 Chin. Phys. B 25 067504
|
[1] |
Shen Z X and Dessau D S 1995 Phys. Rep. 253 1
|
[2] |
Kargarian M and Fiete G A 2013 Phys. Rev. Lett. 110 156403
|
[3] |
Ramesh R and Spaldin N A 2007 Nat. Mater. 6 21
|
[4] |
Salamon M B and Jaime M 2001 Rev. Mod. Phys. 73 583
|
[5] |
Ramirez A P 1997 J. Phys.: Condens. Matter 9 8171
|
[6] |
Imada M, Fujimori A and Tokura Y 1998 Rev. Mod. Phys. 70 1039
|
[7] |
Jin S, Tiefel T H, McCormack M, Fastnacht R A, Ramesh R and Chen L H 1994 Science 264 413
|
[8] |
Helmolt R, Wocker J, Holzapfel B, Schultz M and Samwer K 1993 Phys. Rev. Lett. 71 2331
|
[9] |
Tokura Y, Urushibara A, Moritomo Y, Arima T, Asamitsu A, Kido G and Furukawa N 1994 J. Phys. Soc. Jpn. 63 3931
|
[10] |
Asamitsu A, Moritomo Y, Tomioka Y, Arima T and Tokura Y 1995 Nature 373 407
|
[11] |
Nagaev E L 2001 Phys. Rep. 346 387
|
[12] |
Tomioka Y, Okuda T, Okimoto Y, Asamitsu A, Kuwahara H and Tokura Y 2001 J. Alloys Compd. 326 27
|
[13] |
Okuda T, Kimura T, Kuwahara H, Tomioka Y, Asamitsu A, Okimoto Y, Saitoh E, and Tokura Y 1999 Mat. Sci. Eng. B 63 163
|
[14] |
Dagotto E, Hotta T and Moreo A 2001 Phys. Rep. 344 1
|
[15] |
Tokura Y and Tomioka Y 1999 J. Magn. Magn. Mater. 200 1
|
[16] |
Bakaul S R, Lin W and Wu T 2011 Appl. Phys. Lett. 99 042503
|
[17] |
Nagai T, Yamada H, Konoto M, Arima T, Kawasaki M, Kimoto K, Matsui Y, and Tokura Y 2008 Phys. Rev. B 78 180414
|
[18] |
Nagao M, So Y G, Yoshida H, Isobe M, Hara T, Ishizuka K and Kimoto K 2013 Nat. Nanotechnol. 8 325
|
[19] |
Yu X Z, Tokunaga Y, Kaneko Y, Zhang W Z, Kimoto K, Matsui Y, Taguchi Y and Tokura Y 2014 Nat. Commun. 5 3198
|
[20] |
Van Santen J H and Jonker G H 1950 Physica 16 599
|
[21] |
Zener C 1951 Phys. Rev. 82 403
|
[22] |
Wollan E O and Koehler W C 1955 Phys. Rev. 100 545
|
[23] |
Anderson P W and Hasegawa H 1995 Phys. Rev. 100 675
|
[24] |
de Gennes P G 1960 Phys. Rev. 118 141
|
[25] |
Moreo A, Yunoki S, Dagotto E 1999 Science 283 2034
|
[26] |
Uehara M, Mori S, Chen C H and Cheong S W 1999 Nature 399 560
|
[27] |
Mayr M, Moreo A, Vergés J A, Arispe J, Feiguin A and Dagotto E 2000 Phys. Rev. Lett. 86 135
|
[28] |
Fath M, Freisem S, Menovsky A A, Tomioka Y, Aarts J and Mydosh J A 1999 Science 285 1540
|
[29] |
Zhang L, Israel C, Biswas A, Greene R L and de Lozanne A 2002 Science 298 805
|
[30] |
Asaka T, Anan Y, Nagai T, Tsutsumi S, Kuwahara H, Kimoto K, Tokura Y and Matsui Y 2002 Phys. Rev. Lett. 89 207203
|
[31] |
Murakami Y, Yoo J H, Shindo D, Atou T and Kikuchi M 2003 Nature 423 965
|
[32] |
Murakami Y, Kasai H, Kim J J, Mamishin S, Shindo D, Mori S and Tonomura A 2010 Nat. Nanotechnol. 5 37
|
[33] |
Lai K, Nakamura M, Kundhikanjana W, Kawasaki M, Tokura Y, Kelly M A and Shen Z X 2010 Science 329 190
|
[34] |
Thomas L, Moriya R, Rettner C and Parkin S S P 2010 Science 330 1810
|
[35] |
Kläui M, Jubert P-O, Allenspach R, Bischof A, Bland J A C, Faini G, Rüdiger U, Vaz C A F, Vila L and Vouille C 2005 Phys. Rev. Lett. 95 026601
|
[36] |
Kläui M, Vaz C A F, Bland J A C, Wernsdorfer W, Faini G, Cambril E, Heyderman L J, Nolting F and Rüdiger U 2005 Phys. Rev. Lett. 94 106601
|
[37] |
Yamaguchi A, Ono T, Nasu S, Miyake K, Mibu K and Shinjo T Phys. Rev. Lett. 92 077205
|
[38] |
Hayashi M, Thomas L, Rettner C, Moriya R and Parkin S S P 2006 Nat. Phys. 3 21
|
[39] |
Thomas L, Hayashi M, Jiang X, Moriya R, Rettner C and Parkin S S P 2006 Nature 443 197
|
[40] |
Torrejon J, Malinowski G, Pelloux M, Weil R, Thiaville A, Curiale J, Lacour D, Montaigne F and Hehn M 2012 Phys. Rev. Lett. 109 106601
|
[41] |
Hayashi M, Thomas L, Moriya R, Rettner C and Parkin S S P 2008 Science 320 209
|
[42] |
Parkin S S P, Hayashi M and Thomas L 2008 Science 320 190
|
[43] |
Allwood D A, Xiong G, Faulkner C C, Atkinson D, Petit D and Cowburn R P 2005 Science 309 1688
|
[44] |
Fukami S, Suzuki S, Nagahara K, Ohshima N, Ozaki Y, Saito S, Nebashi R, Sakimura N, Honjo H, Mori K, Igarashi C, Miura S, Ishiwata N and Sugibayashi T 2009 Symposium on VLSI Technology. Digest Tech. Pap 230
|
[45] |
Chiba D, Yamada G, Koyama T, Ueda K, Tanigawa H, Fukami S, Suzuki T, Ohshima N, Ishiwata N and Nakatani Y 2010 Appl. Phys. Exp. 3 073004
|
[46] |
Chanthbouala A, Matsumoto R, Grollier J, Cros V, Anane A, Fert A, Khvalkovskiy A V, Zvezdin K A, Nishimura K, Nagamine Y, Maehara H, Tsunekawa K, Fukushima A and Yuasa S 2011 Nat. Phys. 7 626
|
[47] |
Koyama T, Chiba D, Ueda K, Kondou K, Tanigawa H, Fukami S, Suzuki T, Ohshima N, Ishiwata N, Nakatani Y, Kobayashi K and Ono T 2011 Nat. Mater. 10 194
|
[48] |
Miron I M, Moore T, Szambolics H, Buda-Prejbeanu L D, Auffret S, Rodacq B, Pizzini S, Vogel J, Bonfim M, Schuhl A and Gaudin G 2011 Nat. Mater. 10 419
|
[49] |
Emori S, Bauer U, Ahh S M, Martinez E and Beach G S D 2013 Nat. Mater. 12 611
|
[50] |
Yamanouchi M, Chiba D, Matsukura F and Ohno H 2004 Nature 428 539
|
[51] |
Feigenson M, Reiner J W and Klein L 2007 Phys. Rev. Lett. 98 247204
|
[52] |
Rhensius J, Vaz C A F, Bisig A, Schweitzer S, Heidler J, Korner H S, Locatelli A, Nino M A, Weigand M, Mechin L, Gaucher F, Goering E, Heyderman L J and Klaui M 2011 Appl. Phys. Lett. 99 062508
|
[53] |
Cibert J, Bobo J F and Luders U 2005 C. R. Phys. 6 977
|
[54] |
Vaza C A F, Wanga H Q, Ahna C H, Henricha V E, Baykarab M Z, Schwendemannb T C, Piletb N, Albersb B J, Schwarzb U D, Zhangc L H, Zhuc Y, Wangd J and Altmane E I 2009 Surf. Sci. 603 291
|
[55] |
Park J H, Vescovo E, Kim H J, Kwon C, Ramesh R and Venkatesan T 1998 Nature 392 794
|
[56] |
Thiaville A, Nakatani Y, Miltat J and Suzuki Y 2005 Europhys. Lett. 69 990
|
[57] |
Foerster M, Pena L, Vaz C A F, Heinen J, Finizio S, Schula T, Bisig A, Buttner F, Eisebitt S, Mechin L, Huhn S, Moshnyaga V and Klaui M 2014 Appl. Phys. Lett. 104 072410
|
[58] |
Laufenberg M, Bührer W, Bedau D, Melchy P E, Kläui M, Vila L, Faini G, Vaz C A F, Bland J A C and Rüdiger U 2006 Phys. Rev. Lett. 97 046602
|
[59] |
Wang J, Xie L S, Wang C S, Zhang H Z, Shu L, Bai J, Chai Y S, Zhao X, Nie J C, Cao C B, Gu C Z, Xiong C M, Sun Y, Shi J, Salahuddin S, Xia K, Nan C W and Zhang J X 2014 Phys. Rev. B 90 224407
|
[60] |
Skyrme T H R 1962 Nucl. Phys. 31 556
|
[61] |
Hsieh D, Xia Y, Wray L, Qian D, Pal A, Dil J H, Osterwalder J, Meier F, Bihlmayer G, Bihlmayer G, Kane C L, Hor Y S, Cava R J and Hasan M Z 2009 Science 323 919
|
[62] |
Mühlbauer S, Binz B, Jonietz F, Pfleiderer C, Rosch A, Neubauer A, Georgii R and Böni P 2009 Science 323 915
|
[63] |
Munzer W, Neubauer A, Adams T, Muhlbauer S, Franz C, Jonietz F, Grorgil R, Boni P, Pedersen B, Schmidt M, Rosch A and Pfleiderer C 2010 Phys. Rev. B 81 041203
|
[64] |
Poelma J E and Hawker C J 2010 Nat. Nanotechnol. 5 243
|
[65] |
Bergmann K, Kubetzka A, Pietzsch O and Wiesendanger R 2014 J. Phys.: Condens. Matter 26 394002
|
[66] |
Bogdanov A N and Yablonskii D A 1989 Sov. Phys. JETP 68 101
|
[67] |
Rößlerl U K, Bogdanov A N and Pfleiderer C 2006 Nature 442 797
|
[68] |
Yu X Z, Onnse Y, Kanazawa N, Park J H, Han J H, Matsui Y, Nagaosa N and Tokura Y 2010 Nature 465 901
|
[69] |
Yi S D, Onoda S, Nagaosa N and Han J H 2009 Phys. Rev. B 80 054416
|
[70] |
Yu X Z, Kanazawa N, Onose Y, Kimoto K, Zhang W Z, Ishiwata S, Matsui Y and Tokura Y 2011 Nat. Mater. 10 106
|
[71] |
Nagaosa N and Tokura Y 2013 Nat. Nanotechnol. 8 899
|
[72] |
Onose Y, Takeshita N, Terakura C, Takagi H and Tokura Y 2005 Phys. Rev. B 72 224431
|
[73] |
Lee M, Kang W, Onose Y, Tokura Y and Ong N P 2009 Phys. Rev. Lett. 102 186601
|
[74] |
Neubauer A, Pfleiderer C, Binz B, Rosch A, Ritz R, Niklowitz P G and Böni P 2009 Phys. Rev. Lett. 102 186602
|
[75] |
Seki S, Yu X Z, Ishiwata S and Tokura Y 2012 Science 336 198
|
[76] |
Du H, Liang D, Jin C, Kong L, Stolt M J, Ning W, Yang J, Xing Y, Wang J, Che R, Zang J, Jin S, Zhang Y and Tian M 2015 Nat. Commun. 6 7637
|
[77] |
Woo S H, Litzius K, Krüger B, Im M Y, Caretta L, Richter K, Mann M, Krone A, Reeve R, Weigand M, Agrawal P, Fischer P, Kläui M and Beach G S D 2015 arXiv 1502
|
[78] |
Büttner F, Moutafis C, Schneider M, Krüger B, Günther C M, Geilhufe J, Schmising C K, Mohanty J, Pfau B, Schaffert S, Bisig A, Foerster M, Schulz T, Vaz C A F, Franken J H, Swagten H J M, Kläui M and Eisebitt S 2015 Nat. Phys. 11 225
|
[79] |
Fert A, Cros V and Sampaio J 2013 Nat. Nanotechnol. 8 152
|
[80] |
Jonietz F, Mühlbauer S, Pfleiderer C, Neubauer A, Münzer W, Bauer A, Adams T, Georgii R, Böni P, Duine R A, Everschor K, Garst M and Rosch A 2010 Science 330 1648
|
[81] |
Yu X Z, Kanazawa N, Zhang W Z, Nagai T, Hara T, Kimoto K, Matsui Y, Onose Y and Tokura Y 2012 Nat. Commun. 3 988
|
[82] |
Iwasaki J, Mochizuki M and Nagaosa N 2013 Nat. Commun. 4 1463
|
[83] |
Sampaio J, Cros V, Rohart S, Thiaville A and Fert A 2013 Nat. Nanotechnol. 8 839
|
[84] |
Eerenstein W, Mathur N D and Scott J F 2006 Nature 442 759
|
[85] |
Finizio S, Foerster M, Krüger B, Vaz C A F, Miyawaki T, Mawass M A, Peña L, Méchin L, Hühn S, Moshnyaga V, Büttner F, Bisig A, Le Guyader L, Moussaoui S E I, Valencia S, Kronast F, Eisebitt S and Kläui M 2014 J. Phys.: Condens. Matter 26 456003
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|