Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(6): 067504    DOI: 10.1088/1674-1056/25/6/067504
Special Issue: TOPICAL REVIEW — Low-dimensional complex oxide structures
TOPICAL REVIEW—Low-dimensional complex oxide structures Prev   Next  

Nanoscale control of low-dimensional spin structures in manganites

Jing Wang(王静)1, Iftikhar Ahmed Malik1, Renrong Liang(梁仁荣)2, Wen Huang(黄文)3, Renkui Zheng(郑仁奎)4, Jinxing Zhang(张金星)1
1 Department of Physics, Beijing Normal University, Beijing 100875, China;
2 Tsinghua National Laboratory for Information Science and Technology, Institute of Microelectronics, Tsinghua University, Beijing 100084, China;
3 School of Microelectronics and Solid-State Electronics, University of Electronic Science and Technology of China, Chengdu 611731, China;
4 State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
Abstract  

Due to the upcoming demands of next-generation electronic/magnetoelectronic devices with low-energy consumption, emerging correlated materials (such as superconductors, topological insulators and manganites) are one of the highly promising candidates for the applications. For the past decades, manganites have attracted great interest due to the colossal magnetoresistance effect, charge-spin-orbital ordering, and electronic phase separation. However, the incapable of deterministic control of those emerging low-dimensional spin structures at ambient condition restrict their possible applications. Therefore, the understanding and control of the dynamic behaviors of spin order parameters at nanoscale in manganites under external stimuli with low energy consumption, especially at room temperature is highly desired. In this review, we collected recent major progresses of nanoscale control of spin structures in manganites at low dimension, especially focusing on the control of their phase boundaries, domain walls as well as the topological spin structures (e.g., skyrmions). In addition, capacitor-based prototype spintronic devices are proposed by taking advantage of the above control methods in manganites. This capacitor-based structure may provide a new platform for the design of future spintronic devices with low-energy consumption.

Keywords:  manganites      spin structures      nanoscale      phase boundary      domain wall      skyrmion      spintronic device      capacitor  
Received:  31 March 2016      Revised:  18 April 2016      Accepted manuscript online: 
PACS:  75.75.-c (Magnetic properties of nanostructures)  
  85.70.-w (Magnetic devices)  
  85.75.-d (Magnetoelectronics; spintronics: devices exploiting spin polarized transport or integrated magnetic fields)  
Fund: 

Project supported by the National Basic Research Program of China (Grant No. 2014CB920902), the National Natural Science Foundation of China (Grant Nos. 61306105 and 51572278), the Information Science and Technology (TNList) Cross-discipline Foundation from Tsinghua National Laboratory, China, and the Fund from the State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, China.

Corresponding Authors:  Jinxing Zhang     E-mail:  jxzhang@bnu.edu.cn

Cite this article: 

Jing Wang(王静), Iftikhar Ahmed Malik, Renrong Liang(梁仁荣), Wen Huang(黄文), Renkui Zheng(郑仁奎), Jinxing Zhang(张金星) Nanoscale control of low-dimensional spin structures in manganites 2016 Chin. Phys. B 25 067504

[1] Shen Z X and Dessau D S 1995 Phys. Rep. 253 1
[2] Kargarian M and Fiete G A 2013 Phys. Rev. Lett. 110 156403
[3] Ramesh R and Spaldin N A 2007 Nat. Mater. 6 21
[4] Salamon M B and Jaime M 2001 Rev. Mod. Phys. 73 583
[5] Ramirez A P 1997 J. Phys.: Condens. Matter 9 8171
[6] Imada M, Fujimori A and Tokura Y 1998 Rev. Mod. Phys. 70 1039
[7] Jin S, Tiefel T H, McCormack M, Fastnacht R A, Ramesh R and Chen L H 1994 Science 264 413
[8] Helmolt R, Wocker J, Holzapfel B, Schultz M and Samwer K 1993 Phys. Rev. Lett. 71 2331
[9] Tokura Y, Urushibara A, Moritomo Y, Arima T, Asamitsu A, Kido G and Furukawa N 1994 J. Phys. Soc. Jpn. 63 3931
[10] Asamitsu A, Moritomo Y, Tomioka Y, Arima T and Tokura Y 1995 Nature 373 407
[11] Nagaev E L 2001 Phys. Rep. 346 387
[12] Tomioka Y, Okuda T, Okimoto Y, Asamitsu A, Kuwahara H and Tokura Y 2001 J. Alloys Compd. 326 27
[13] Okuda T, Kimura T, Kuwahara H, Tomioka Y, Asamitsu A, Okimoto Y, Saitoh E, and Tokura Y 1999 Mat. Sci. Eng. B 63 163
[14] Dagotto E, Hotta T and Moreo A 2001 Phys. Rep. 344 1
[15] Tokura Y and Tomioka Y 1999 J. Magn. Magn. Mater. 200 1
[16] Bakaul S R, Lin W and Wu T 2011 Appl. Phys. Lett. 99 042503
[17] Nagai T, Yamada H, Konoto M, Arima T, Kawasaki M, Kimoto K, Matsui Y, and Tokura Y 2008 Phys. Rev. B 78 180414
[18] Nagao M, So Y G, Yoshida H, Isobe M, Hara T, Ishizuka K and Kimoto K 2013 Nat. Nanotechnol. 8 325
[19] Yu X Z, Tokunaga Y, Kaneko Y, Zhang W Z, Kimoto K, Matsui Y, Taguchi Y and Tokura Y 2014 Nat. Commun. 5 3198
[20] Van Santen J H and Jonker G H 1950 Physica 16 599
[21] Zener C 1951 Phys. Rev. 82 403
[22] Wollan E O and Koehler W C 1955 Phys. Rev. 100 545
[23] Anderson P W and Hasegawa H 1995 Phys. Rev. 100 675
[24] de Gennes P G 1960 Phys. Rev. 118 141
[25] Moreo A, Yunoki S, Dagotto E 1999 Science 283 2034
[26] Uehara M, Mori S, Chen C H and Cheong S W 1999 Nature 399 560
[27] Mayr M, Moreo A, Vergés J A, Arispe J, Feiguin A and Dagotto E 2000 Phys. Rev. Lett. 86 135
[28] Fath M, Freisem S, Menovsky A A, Tomioka Y, Aarts J and Mydosh J A 1999 Science 285 1540
[29] Zhang L, Israel C, Biswas A, Greene R L and de Lozanne A 2002 Science 298 805
[30] Asaka T, Anan Y, Nagai T, Tsutsumi S, Kuwahara H, Kimoto K, Tokura Y and Matsui Y 2002 Phys. Rev. Lett. 89 207203
[31] Murakami Y, Yoo J H, Shindo D, Atou T and Kikuchi M 2003 Nature 423 965
[32] Murakami Y, Kasai H, Kim J J, Mamishin S, Shindo D, Mori S and Tonomura A 2010 Nat. Nanotechnol. 5 37
[33] Lai K, Nakamura M, Kundhikanjana W, Kawasaki M, Tokura Y, Kelly M A and Shen Z X 2010 Science 329 190
[34] Thomas L, Moriya R, Rettner C and Parkin S S P 2010 Science 330 1810
[35] Kläui M, Jubert P-O, Allenspach R, Bischof A, Bland J A C, Faini G, Rüdiger U, Vaz C A F, Vila L and Vouille C 2005 Phys. Rev. Lett. 95 026601
[36] Kläui M, Vaz C A F, Bland J A C, Wernsdorfer W, Faini G, Cambril E, Heyderman L J, Nolting F and Rüdiger U 2005 Phys. Rev. Lett. 94 106601
[37] Yamaguchi A, Ono T, Nasu S, Miyake K, Mibu K and Shinjo T Phys. Rev. Lett. 92 077205
[38] Hayashi M, Thomas L, Rettner C, Moriya R and Parkin S S P 2006 Nat. Phys. 3 21
[39] Thomas L, Hayashi M, Jiang X, Moriya R, Rettner C and Parkin S S P 2006 Nature 443 197
[40] Torrejon J, Malinowski G, Pelloux M, Weil R, Thiaville A, Curiale J, Lacour D, Montaigne F and Hehn M 2012 Phys. Rev. Lett. 109 106601
[41] Hayashi M, Thomas L, Moriya R, Rettner C and Parkin S S P 2008 Science 320 209
[42] Parkin S S P, Hayashi M and Thomas L 2008 Science 320 190
[43] Allwood D A, Xiong G, Faulkner C C, Atkinson D, Petit D and Cowburn R P 2005 Science 309 1688
[44] Fukami S, Suzuki S, Nagahara K, Ohshima N, Ozaki Y, Saito S, Nebashi R, Sakimura N, Honjo H, Mori K, Igarashi C, Miura S, Ishiwata N and Sugibayashi T 2009 Symposium on VLSI Technology. Digest Tech. Pap 230
[45] Chiba D, Yamada G, Koyama T, Ueda K, Tanigawa H, Fukami S, Suzuki T, Ohshima N, Ishiwata N and Nakatani Y 2010 Appl. Phys. Exp. 3 073004
[46] Chanthbouala A, Matsumoto R, Grollier J, Cros V, Anane A, Fert A, Khvalkovskiy A V, Zvezdin K A, Nishimura K, Nagamine Y, Maehara H, Tsunekawa K, Fukushima A and Yuasa S 2011 Nat. Phys. 7 626
[47] Koyama T, Chiba D, Ueda K, Kondou K, Tanigawa H, Fukami S, Suzuki T, Ohshima N, Ishiwata N, Nakatani Y, Kobayashi K and Ono T 2011 Nat. Mater. 10 194
[48] Miron I M, Moore T, Szambolics H, Buda-Prejbeanu L D, Auffret S, Rodacq B, Pizzini S, Vogel J, Bonfim M, Schuhl A and Gaudin G 2011 Nat. Mater. 10 419
[49] Emori S, Bauer U, Ahh S M, Martinez E and Beach G S D 2013 Nat. Mater. 12 611
[50] Yamanouchi M, Chiba D, Matsukura F and Ohno H 2004 Nature 428 539
[51] Feigenson M, Reiner J W and Klein L 2007 Phys. Rev. Lett. 98 247204
[52] Rhensius J, Vaz C A F, Bisig A, Schweitzer S, Heidler J, Korner H S, Locatelli A, Nino M A, Weigand M, Mechin L, Gaucher F, Goering E, Heyderman L J and Klaui M 2011 Appl. Phys. Lett. 99 062508
[53] Cibert J, Bobo J F and Luders U 2005 C. R. Phys. 6 977
[54] Vaza C A F, Wanga H Q, Ahna C H, Henricha V E, Baykarab M Z, Schwendemannb T C, Piletb N, Albersb B J, Schwarzb U D, Zhangc L H, Zhuc Y, Wangd J and Altmane E I 2009 Surf. Sci. 603 291
[55] Park J H, Vescovo E, Kim H J, Kwon C, Ramesh R and Venkatesan T 1998 Nature 392 794
[56] Thiaville A, Nakatani Y, Miltat J and Suzuki Y 2005 Europhys. Lett. 69 990
[57] Foerster M, Pena L, Vaz C A F, Heinen J, Finizio S, Schula T, Bisig A, Buttner F, Eisebitt S, Mechin L, Huhn S, Moshnyaga V and Klaui M 2014 Appl. Phys. Lett. 104 072410
[58] Laufenberg M, Bührer W, Bedau D, Melchy P E, Kläui M, Vila L, Faini G, Vaz C A F, Bland J A C and Rüdiger U 2006 Phys. Rev. Lett. 97 046602
[59] Wang J, Xie L S, Wang C S, Zhang H Z, Shu L, Bai J, Chai Y S, Zhao X, Nie J C, Cao C B, Gu C Z, Xiong C M, Sun Y, Shi J, Salahuddin S, Xia K, Nan C W and Zhang J X 2014 Phys. Rev. B 90 224407
[60] Skyrme T H R 1962 Nucl. Phys. 31 556
[61] Hsieh D, Xia Y, Wray L, Qian D, Pal A, Dil J H, Osterwalder J, Meier F, Bihlmayer G, Bihlmayer G, Kane C L, Hor Y S, Cava R J and Hasan M Z 2009 Science 323 919
[62] Mühlbauer S, Binz B, Jonietz F, Pfleiderer C, Rosch A, Neubauer A, Georgii R and Böni P 2009 Science 323 915
[63] Munzer W, Neubauer A, Adams T, Muhlbauer S, Franz C, Jonietz F, Grorgil R, Boni P, Pedersen B, Schmidt M, Rosch A and Pfleiderer C 2010 Phys. Rev. B 81 041203
[64] Poelma J E and Hawker C J 2010 Nat. Nanotechnol. 5 243
[65] Bergmann K, Kubetzka A, Pietzsch O and Wiesendanger R 2014 J. Phys.: Condens. Matter 26 394002
[66] Bogdanov A N and Yablonskii D A 1989 Sov. Phys. JETP 68 101
[67] Rößlerl U K, Bogdanov A N and Pfleiderer C 2006 Nature 442 797
[68] Yu X Z, Onnse Y, Kanazawa N, Park J H, Han J H, Matsui Y, Nagaosa N and Tokura Y 2010 Nature 465 901
[69] Yi S D, Onoda S, Nagaosa N and Han J H 2009 Phys. Rev. B 80 054416
[70] Yu X Z, Kanazawa N, Onose Y, Kimoto K, Zhang W Z, Ishiwata S, Matsui Y and Tokura Y 2011 Nat. Mater. 10 106
[71] Nagaosa N and Tokura Y 2013 Nat. Nanotechnol. 8 899
[72] Onose Y, Takeshita N, Terakura C, Takagi H and Tokura Y 2005 Phys. Rev. B 72 224431
[73] Lee M, Kang W, Onose Y, Tokura Y and Ong N P 2009 Phys. Rev. Lett. 102 186601
[74] Neubauer A, Pfleiderer C, Binz B, Rosch A, Ritz R, Niklowitz P G and Böni P 2009 Phys. Rev. Lett. 102 186602
[75] Seki S, Yu X Z, Ishiwata S and Tokura Y 2012 Science 336 198
[76] Du H, Liang D, Jin C, Kong L, Stolt M J, Ning W, Yang J, Xing Y, Wang J, Che R, Zang J, Jin S, Zhang Y and Tian M 2015 Nat. Commun. 6 7637
[77] Woo S H, Litzius K, Krüger B, Im M Y, Caretta L, Richter K, Mann M, Krone A, Reeve R, Weigand M, Agrawal P, Fischer P, Kläui M and Beach G S D 2015 arXiv 1502
[78] Büttner F, Moutafis C, Schneider M, Krüger B, Günther C M, Geilhufe J, Schmising C K, Mohanty J, Pfau B, Schaffert S, Bisig A, Foerster M, Schulz T, Vaz C A F, Franken J H, Swagten H J M, Kläui M and Eisebitt S 2015 Nat. Phys. 11 225
[79] Fert A, Cros V and Sampaio J 2013 Nat. Nanotechnol. 8 152
[80] Jonietz F, Mühlbauer S, Pfleiderer C, Neubauer A, Münzer W, Bauer A, Adams T, Georgii R, Böni P, Duine R A, Everschor K, Garst M and Rosch A 2010 Science 330 1648
[81] Yu X Z, Kanazawa N, Zhang W Z, Nagai T, Hara T, Kimoto K, Matsui Y, Onose Y and Tokura Y 2012 Nat. Commun. 3 988
[82] Iwasaki J, Mochizuki M and Nagaosa N 2013 Nat. Commun. 4 1463
[83] Sampaio J, Cros V, Rohart S, Thiaville A and Fert A 2013 Nat. Nanotechnol. 8 839
[84] Eerenstein W, Mathur N D and Scott J F 2006 Nature 442 759
[85] Finizio S, Foerster M, Krüger B, Vaz C A F, Miyawaki T, Mawass M A, Peña L, Méchin L, Hühn S, Moshnyaga V, Büttner F, Bisig A, Le Guyader L, Moussaoui S E I, Valencia S, Kronast F, Eisebitt S and Kläui M 2014 J. Phys.: Condens. Matter 26 456003
[1] Skyrmion-based logic gates controlled by electric currents in synthetic antiferromagnet
Linlin Li(李林霖), Jia Luo(罗佳), Jing Xia(夏静), Yan Zhou(周艳), Xiaoxi Liu(刘小晰), and Guoping Zhao(赵国平). Chin. Phys. B, 2023, 32(1): 017506.
[2] Progress and challenges in magnetic skyrmionics
Haifeng Du(杜海峰) and Xiangrong Wang(王向荣). Chin. Phys. B, 2022, 31(8): 087507.
[3] Current-driven dynamics of skyrmion bubbles in achiral uniaxial magnets
Yaodong Wu(吴耀东), Jialiang Jiang(蒋佳良), and Jin Tang(汤进). Chin. Phys. B, 2022, 31(7): 077504.
[4] Non-volatile multi-state magnetic domain transformation in a Hall balance
Yang Gao(高阳), Jingyan Zhang(张静言), Pengwei Dou(窦鹏伟), Zhuolin Li(李卓霖), Zhaozhao Zhu(朱照照), Yaqin Guo(郭雅琴), Chaoqun Hu(胡超群), Weidu Qin(覃维都), Congli He(何聪丽), Shipeng Shen(申世鹏), Ying Zhang(张颖), and Shouguo Wang(王守国). Chin. Phys. B, 2022, 31(6): 067502.
[5] Thermionic electron emission in the 1D edge-to-edge limit
Tongyao Zhang(张桐耀), Hanwen Wang(王汉文), Xiuxin Xia(夏秀鑫), Chengbing Qin(秦成兵), and Xiaoxi Li(李小茜). Chin. Phys. B, 2022, 31(5): 058504.
[6] SnO2/Co3O4 nanofibers using double jets electrospinning as low operating temperature gas sensor
Zhao Wang(王昭), Shu-Xing Fan(范树兴), and Wei Tang(唐伟). Chin. Phys. B, 2022, 31(2): 028101.
[7] Ozone oxidation of 4H-SiC and flat-band voltage stability of SiC MOS capacitors
Zhi-Peng Yin(尹志鹏), Sheng-Sheng Wei(尉升升), Jiao Bai(白娇), Wei-Wei Xie(谢威威), Zhao-Hui Liu(刘兆慧), Fu-Wen Qin(秦福文), and De-Jun Wang(王德君). Chin. Phys. B, 2022, 31(11): 117302.
[8] Skyrmion transport driven by pure voltage generated strain gradient
Shan Qiu(邱珊), Jia-Hao Liu(刘嘉豪), Ya-Bo Chen(陈亚博), Yun-Ping Zhao(赵云平), Bo Wei(危波), and Liang Fang(方粮). Chin. Phys. B, 2022, 31(11): 117701.
[9] Angle-dependent spin wave spectra of permalloy ring arrays
Shuxuan Wu(吴书旋), Zengtai Zhu(朱增泰), Yunxu Ma(马云旭), Jinwu Wei(魏晋武), Senfu Zhang(张森富), Jianbo Wang(王建波), and Qingfang Liu(刘青芳). Chin. Phys. B, 2022, 31(11): 117505.
[10] Spin transfer nano-oscillator based on synthetic antiferromagnetic skyrmion pair assisted by perpendicular fixed magnetic field
Yun-Xu Ma(马云旭), Jia-Ning Wang(王佳宁), Zhao-Zhuo Zeng(曾钊卓), Ying-Yue Yuan(袁映月), Jin-Xia Yang(杨金霞), Hui-Bo Liu(刘慧博), Sen-Fu Zhang(张森富), Jian-Bo Wang(王建波), Chen-Dong Jin(金晨东), and Qing-Fang Liu(刘青芳). Chin. Phys. B, 2022, 31(10): 100501.
[11] Voltage-controllable magnetic skyrmion dynamics for spiking neuron device applications
Ming-Min Zhu(朱明敏), Shu-Ting Cui(崔淑婷), Xiao-Fei Xu(徐晓飞), Sheng-Bin Shi(施胜宾), Di-Qing Nian(年迪青), Jing Luo(罗京), Yang Qiu(邱阳), Han Yang(杨浛), Guo-Liang Yu(郁国良), and Hao-Miao Zhou (周浩淼). Chin. Phys. B, 2022, 31(1): 018503.
[12] Construction and mechanism analysis on nanoscale thermal cloak by in-situ annealing silicon carbide film
Jian Zhang(张健), Hao-Chun Zhang(张昊春), Zi-Liang Huang(黄子亮), Wen-Bo Sun(孙文博), and Yi-Yi Li(李依依). Chin. Phys. B, 2022, 31(1): 014402.
[13] Modeling and character analyzing of multiple fractional-order memcapacitors in parallel connection
Xiang Xu(徐翔), Gangquan Si(司刚全), Zhang Guo(郭璋), and Babajide Oluwatosin Oresanya. Chin. Phys. B, 2022, 31(1): 018401.
[14] Zero-field skyrmions in FeGe thin films stabilized through attaching a perpendicularly magnetized single-domain Ni layer
Zi-Bo Zhang(张子博) and Yong Hu(胡勇). Chin. Phys. B, 2021, 30(7): 077503.
[15] Search for topological defect of axionlike model with cesium atomic comagnetometer
Yucheng Yang(杨雨成), Teng Wu(吴腾), Jianwei Zhang(张建玮), and Hong Guo(郭弘). Chin. Phys. B, 2021, 30(5): 050704.
No Suggested Reading articles found!