CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Role of vacancy-type defects in magnetism of GaMnN |
Hai-Ying Xing(邢海英)1,2, Yu Chen(陈雨)2, Chen Ji(纪骋)3, Sheng-Xiang Jiang(蒋盛翔)3, Meng-Yao Yuan(苑梦尧)2, Zhi-Ying Guo(郭志英)2, Kun Li(李琨)2, Ming-Qi Cui(崔明启)2, Guo-Yi Zhang(张国义)3 |
1 School of Electronics and Information Engineering, Tianjin Polytechnic University, Tianjin 300387, China;
2 Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China;
3 Research Center for Wide-band Semiconductors, Peking University, Beijing 100871, China |
|
|
Abstract Role of vacancy-type (N vacancy (VN) and Ga vacancy (VGa)) defects in magnetism of GaMnN is investigated by first-principle calculation. Theoretical results show that both the VN and VGa influence the ferromagnetic state of a system. The VN can induce antiferromagnetic state and the VGa indirectly modify the stability of the ferromagnetic state by depopulating the Mn levels in GaMnN. The transfer of electrons between the vacancy defects and Mn ions results in converting Mn3+ (d4) into Mn2+ (d5). The introduced VN and the ferromagnetism become stronger and then gradually weaker with Mn concentration increasing, as well as the coexistence of Mn3+ (d4) and Mn2+ (d5) are found in GaMnN films grown by metal--organic chemical vapor deposition. The analysis suggests that a big proportion of Mn3+ changing into Mn2+ will reduce the exchange interaction and magnetic correlation of Mn atoms and lead to the reduction of ferromagnetism of material.
|
Received: 17 November 2015
Revised: 29 February 2016
Accepted manuscript online:
|
PACS:
|
75.50.Pp
|
(Magnetic semiconductors)
|
|
63.20.dk
|
(First-principles theory)
|
|
67.80.dj
|
(Defects, impurities, and diffusion)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61204008, 11075176, and 11505211) and the National Key Basic Research Special Foundation of China (Grant No. 2013CB328705).} aisebox{\ht\strutbox}{\hypertarget{cauthor}} ^# |
Corresponding Authors:
Zhi-Ying Guo
E-mail: zyguo@ihep.ac.cn
|
Cite this article:
Hai-Ying Xing(邢海英), Yu Chen(陈雨), Chen Ji(纪骋), Sheng-Xiang Jiang(蒋盛翔), Meng-Yao Yuan(苑梦尧), Zhi-Ying Guo(郭志英), Kun Li(李琨), Ming-Qi Cui(崔明启), Guo-Yi Zhang(张国义) Role of vacancy-type defects in magnetism of GaMnN 2016 Chin. Phys. B 25 067503
|
[1] |
Žutić I, Fabian J and Sarma S D 2004 Rev. Mod. Phys. 76 323
|
[2] |
Ryky Nelson, Tom Berlijn, Juana Moreno, Mark Jarrell and Wei Ku 2015 Phys. Rev. Lett. 115 197203
|
[3] |
Chen D, Ding Z, Yao S, Hua W, Wang K and Chen T and 2008 Nucl. Instrum. Methods Phys. Res. Sect. B 266 2797
|
[4] |
Granville S, Ruck B J, Budde F, Trodahl H J and Williams G V M 2010 Phys. Rev. B 81 184425
|
[5] |
Stefanowicz S, Kunert G, Simserides C, Majewski J A, Stefanowicz W, Kruse C and Figge S 2013 Phys. Rev. B 88 081201
|
[6] |
Thaler G T, Overberg M E, Gila B, Frazier R, Abernathy C R and Pearton S J 2002 Appl. Phys. Lett. 80 3964
|
[7] |
Kim K H, Lee K J, Kim D J, Kim H J, Ihm Y E, Djayaprawira D, Takahashi M, Kim C S, Kim C G and Yoo S H 2003 Appl. Phys. Lett. 82 1775
|
[8] |
Kane M H, Asghar A, Vestal C R, Strassburg M, Senawiratne J, Zhang Z J, Dietz N, Summers C J and Ferguson I T 2005 Semicond. Sci. Technol. 20 L5
|
[9] |
Yang X L, Wu J J, Chen Z T, Pan Y B, Zhang Y, Yang Z J, Yu T J and Zhang G Y 2007 Solid State Commun. 143 236
|
[10] |
Jiang X Z, Yang X L, Ji C, Xing H Y, Yang Z J, Wang C D, Yu T J and Zang G Y 2014 Chin. Phys. Lett. 31 067501
|
[11] |
Kunert G, Dobkowska S, Tian Li, Reuther H, Kruse C, Figge S and Jakiela R 2012 Appl. Phys. Lett. 101 022413
|
[12] |
Boukortt A, Hayn R and Virot F 2012 Phys. Rev. B 85 033302
|
[13] |
Pereira L M C, Wahl U, Correia J G, Decoster S, Amorim L M and da Silva M R 2012 Phys. Rev. B 86 195202
|
[14] |
Yang X L, Zhu W, Wang C D, Fang H, Yu T J, Yang Z J. Zhang G Y, Qin X B, Yu R S and Wang B Y 2009 Appl. Phys. Lett. 94 151907
|
[15] |
Yang X L, Chen Z T, Zhao L B, Zhu W X, Wang C D, Pei X D and Zhang G Y 2008 J. Phys. D: Appl. Phys. 41 245004
|
[16] |
Yang X L, Chen Z T, Wang C D, Huang S, Fang H, Yang Z J, Chen D L and Yan W S 2008 J. Phys. D: Appl. Phys. 41 125002
|
[17] |
Xing H Y, Xu Z C, Cui M Q, Xie Y X and Zhang G Y 2014 Chin. Phys. B 23 107803
|
[18] |
Pratibha Dev, Yu Xue and Peihong Zhang 2008 Phys. Rev. Lett. 100 117204
|
[19] |
Anlong Kuang, Hongkuan Yuana and Hong Chena 2010 Appl. Surf. Sci. 256 6040
|
[20] |
Priya Mahadevan and Mahalakshmi S 2006 Phys. Rev. B 73 153201
|
[21] |
Segall, Lindan M D and Probet P 2002 J. Phys.: Condens. Matter 14 2717
|
[22] |
Xing H Y, Fan G H, Zhao D G, He M, Zhang Y and Zhou T M 2008 Acta Phys. Sin. 57 6513 (in Chinese)
|
[23] |
Xing H Y, Fan G H, Zhang Y and Zhao D G 2008 Acta Phys. Sin. 57 450 (in Chinese)
|
[24] |
Xing H Y, Fan G H, Yang X L and Zhang G Y 2010 Acta Phys. Sin. 59 504 (in Chinese)
|
[25] |
Xing H Y, Niu P J and Xie Y X 2012 Chin. Phys. B 21 077801
|
[26] |
Sluiter M H F, Kawazoe Y, Sharma P, Inoue A, Raju R, Rout A C and Waghmare U V 2005 Phys. Rev. Lett. 94 187204
|
[27] |
Li Y L, Fan W L, Sun H G, Cheng X F, Li P, Zhao X and Jiang M H 2010 J. Solid State Chem. 183 2662
|
[28] |
Larson P and Satpathy S 2007 Phys. Rev. B 76 245205
|
[29] |
Obloh H, Bachem K H, Kaufmann U, Kunzer M, Maier M, Ramakrishnan A and Schlotter P 1998 J. Cryst. Growth 195 270
|
[30] |
Neugebauer J and Van de Walle C G 1996 Appl. Phys. Lett. 69 503
|
[31] |
Saarinen K, Laine T, Kuisma S, Nissila J, Hautojarvi P, Dobrzynski L, Baranowski J M, Pakula K, Stepniewski R, Wojdak M, Wysmolek A, Suski T, Leszczynski M, Grzegory I and Porowski S 1997 Phys. Rev. Lett. 79 3030
|
[32] |
Gelhausen O, Malguth E, Phillips M R, Goldys E M, Strassburg M, Hoffmann A, Graf T, Gjukic M and Stutzmann M 2004 Appl. Phys. Lett. 84 4514
|
[33] |
Boguslawski P and Bernholc J 2005 Phys. Rev. B 72 115208
|
[34] |
Wang J Q, Chen P P, Guo X G, Li Z F and Lu W 2005 J. Crystal Growth 275 393
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|