Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(6): 067503    DOI: 10.1088/1674-1056/25/6/067503
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Role of vacancy-type defects in magnetism of GaMnN

Hai-Ying Xing(邢海英)1,2, Yu Chen(陈雨)2, Chen Ji(纪骋)3, Sheng-Xiang Jiang(蒋盛翔)3, Meng-Yao Yuan(苑梦尧)2, Zhi-Ying Guo(郭志英)2, Kun Li(李琨)2, Ming-Qi Cui(崔明启)2, Guo-Yi Zhang(张国义)3
1 School of Electronics and Information Engineering, Tianjin Polytechnic University, Tianjin 300387, China;
2 Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China;
3 Research Center for Wide-band Semiconductors, Peking University, Beijing 100871, China
Abstract  

Role of vacancy-type (N vacancy (VN) and Ga vacancy (VGa)) defects in magnetism of GaMnN is investigated by first-principle calculation. Theoretical results show that both the VN and VGa influence the ferromagnetic state of a system. The VN can induce antiferromagnetic state and the VGa indirectly modify the stability of the ferromagnetic state by depopulating the Mn levels in GaMnN. The transfer of electrons between the vacancy defects and Mn ions results in converting Mn3+ (d4) into Mn2+ (d5). The introduced VN and the ferromagnetism become stronger and then gradually weaker with Mn concentration increasing, as well as the coexistence of Mn3+ (d4) and Mn2+ (d5) are found in GaMnN films grown by metal--organic chemical vapor deposition. The analysis suggests that a big proportion of Mn3+ changing into Mn2+ will reduce the exchange interaction and magnetic correlation of Mn atoms and lead to the reduction of ferromagnetism of material.

Keywords:  GaMnN      vacancy defect      ferromagnetism      first-principles calculation      MOCVD  
Received:  17 November 2015      Revised:  29 February 2016      Accepted manuscript online: 
PACS:  75.50.Pp (Magnetic semiconductors)  
  63.20.dk (First-principles theory)  
  67.80.dj (Defects, impurities, and diffusion)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 61204008, 11075176, and 11505211) and the National Key Basic Research Special Foundation of China (Grant No. 2013CB328705).} aisebox{\ht\strutbox}{\hypertarget{cauthor}} ^#

Corresponding Authors:  Zhi-Ying Guo     E-mail:  zyguo@ihep.ac.cn

Cite this article: 

Hai-Ying Xing(邢海英), Yu Chen(陈雨), Chen Ji(纪骋), Sheng-Xiang Jiang(蒋盛翔), Meng-Yao Yuan(苑梦尧), Zhi-Ying Guo(郭志英), Kun Li(李琨), Ming-Qi Cui(崔明启), Guo-Yi Zhang(张国义) Role of vacancy-type defects in magnetism of GaMnN 2016 Chin. Phys. B 25 067503

[1] Žutić I, Fabian J and Sarma S D 2004 Rev. Mod. Phys. 76 323
[2] Ryky Nelson, Tom Berlijn, Juana Moreno, Mark Jarrell and Wei Ku 2015 Phys. Rev. Lett. 115 197203
[3] Chen D, Ding Z, Yao S, Hua W, Wang K and Chen T and 2008 Nucl. Instrum. Methods Phys. Res. Sect. B 266 2797
[4] Granville S, Ruck B J, Budde F, Trodahl H J and Williams G V M 2010 Phys. Rev. B 81 184425
[5] Stefanowicz S, Kunert G, Simserides C, Majewski J A, Stefanowicz W, Kruse C and Figge S 2013 Phys. Rev. B 88 081201
[6] Thaler G T, Overberg M E, Gila B, Frazier R, Abernathy C R and Pearton S J 2002 Appl. Phys. Lett. 80 3964
[7] Kim K H, Lee K J, Kim D J, Kim H J, Ihm Y E, Djayaprawira D, Takahashi M, Kim C S, Kim C G and Yoo S H 2003 Appl. Phys. Lett. 82 1775
[8] Kane M H, Asghar A, Vestal C R, Strassburg M, Senawiratne J, Zhang Z J, Dietz N, Summers C J and Ferguson I T 2005 Semicond. Sci. Technol. 20 L5
[9] Yang X L, Wu J J, Chen Z T, Pan Y B, Zhang Y, Yang Z J, Yu T J and Zhang G Y 2007 Solid State Commun. 143 236
[10] Jiang X Z, Yang X L, Ji C, Xing H Y, Yang Z J, Wang C D, Yu T J and Zang G Y 2014 Chin. Phys. Lett. 31 067501
[11] Kunert G, Dobkowska S, Tian Li, Reuther H, Kruse C, Figge S and Jakiela R 2012 Appl. Phys. Lett. 101 022413
[12] Boukortt A, Hayn R and Virot F 2012 Phys. Rev. B 85 033302
[13] Pereira L M C, Wahl U, Correia J G, Decoster S, Amorim L M and da Silva M R 2012 Phys. Rev. B 86 195202
[14] Yang X L, Zhu W, Wang C D, Fang H, Yu T J, Yang Z J. Zhang G Y, Qin X B, Yu R S and Wang B Y 2009 Appl. Phys. Lett. 94 151907
[15] Yang X L, Chen Z T, Zhao L B, Zhu W X, Wang C D, Pei X D and Zhang G Y 2008 J. Phys. D: Appl. Phys. 41 245004
[16] Yang X L, Chen Z T, Wang C D, Huang S, Fang H, Yang Z J, Chen D L and Yan W S 2008 J. Phys. D: Appl. Phys. 41 125002
[17] Xing H Y, Xu Z C, Cui M Q, Xie Y X and Zhang G Y 2014 Chin. Phys. B 23 107803
[18] Pratibha Dev, Yu Xue and Peihong Zhang 2008 Phys. Rev. Lett. 100 117204
[19] Anlong Kuang, Hongkuan Yuana and Hong Chena 2010 Appl. Surf. Sci. 256 6040
[20] Priya Mahadevan and Mahalakshmi S 2006 Phys. Rev. B 73 153201
[21] Segall, Lindan M D and Probet P 2002 J. Phys.: Condens. Matter 14 2717
[22] Xing H Y, Fan G H, Zhao D G, He M, Zhang Y and Zhou T M 2008 Acta Phys. Sin. 57 6513 (in Chinese)
[23] Xing H Y, Fan G H, Zhang Y and Zhao D G 2008 Acta Phys. Sin. 57 450 (in Chinese)
[24] Xing H Y, Fan G H, Yang X L and Zhang G Y 2010 Acta Phys. Sin. 59 504 (in Chinese)
[25] Xing H Y, Niu P J and Xie Y X 2012 Chin. Phys. B 21 077801
[26] Sluiter M H F, Kawazoe Y, Sharma P, Inoue A, Raju R, Rout A C and Waghmare U V 2005 Phys. Rev. Lett. 94 187204
[27] Li Y L, Fan W L, Sun H G, Cheng X F, Li P, Zhao X and Jiang M H 2010 J. Solid State Chem. 183 2662
[28] Larson P and Satpathy S 2007 Phys. Rev. B 76 245205
[29] Obloh H, Bachem K H, Kaufmann U, Kunzer M, Maier M, Ramakrishnan A and Schlotter P 1998 J. Cryst. Growth 195 270
[30] Neugebauer J and Van de Walle C G 1996 Appl. Phys. Lett. 69 503
[31] Saarinen K, Laine T, Kuisma S, Nissila J, Hautojarvi P, Dobrzynski L, Baranowski J M, Pakula K, Stepniewski R, Wojdak M, Wysmolek A, Suski T, Leszczynski M, Grzegory I and Porowski S 1997 Phys. Rev. Lett. 79 3030
[32] Gelhausen O, Malguth E, Phillips M R, Goldys E M, Strassburg M, Hoffmann A, Graf T, Gjukic M and Stutzmann M 2004 Appl. Phys. Lett. 84 4514
[33] Boguslawski P and Bernholc J 2005 Phys. Rev. B 72 115208
[34] Wang J Q, Chen P P, Guo X G, Li Z F and Lu W 2005 J. Crystal Growth 275 393
[1] First-principles study of the bandgap renormalization and optical property of β-LiGaO2
Dangqi Fang(方党旗). Chin. Phys. B, 2023, 32(4): 047101.
[2] Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivity θ-phase TaN
Chao Wu(吴超), Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(4): 046502.
[3] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[4] High-temperature ferromagnetism and strong π-conjugation feature in two-dimensional manganese tetranitride
Ming Yan(闫明), Zhi-Yuan Xie(谢志远), and Miao Gao(高淼). Chin. Phys. B, 2023, 32(3): 037104.
[5] Rational design of Fe/Co-based diatomic catalysts for Li-S batteries by first-principles calculations
Xiaoya Zhang(张晓雅), Yingjie Cheng(程莹洁), Chunyu Zhao(赵春宇), Jingwan Gao(高敬莞), Dongxiao Kan(阚东晓), Yizhan Wang(王义展), Duo Qi(齐舵), and Yingjin Wei(魏英进). Chin. Phys. B, 2023, 32(3): 036803.
[6] Low-resistance ohmic contacts on InAlN/GaN heterostructures with MOCVD-regrown n+-InGaN and mask-free regrowth process
Jingshu Guo(郭静姝), Jiejie Zhu(祝杰杰), Siyu Liu(刘思雨), Jielong Liu(刘捷龙), Jiahao Xu(徐佳豪), Weiwei Chen(陈伟伟), Yuwei Zhou(周雨威), Xu Zhao(赵旭), Minhan Mi(宓珉瀚), Mei Yang(杨眉), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2023, 32(3): 037303.
[7] Single-layer intrinsic 2H-phase LuX2 (X = Cl, Br, I) with large valley polarization and anomalous valley Hall effect
Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), Yuan-Shuo Liu(刘元硕), Shuai Fu(傅帅),Xiao-Ning Cui(崔晓宁), Yi-Hao Wang(王易昊), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(3): 037306.
[8] Li2NiSe2: A new-type intrinsic two-dimensional ferromagnetic semiconductor above 200 K
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(3): 037501.
[9] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[10] Dramatic reduction in dark current of β-Ga2O3 ultraviolet photodectors via β-(Al0.25Ga0.75)2O3 surface passivation
Jian-Ying Yue(岳建英), Xue-Qiang Ji(季学强), Shan Li(李山), Xiao-Hui Qi(岐晓辉), Pei-Gang Li(李培刚), Zhen-Ping Wu(吴真平), and Wei-Hua Tang(唐为华). Chin. Phys. B, 2023, 32(1): 016701.
[11] A 4×4 metal-semiconductor-metal rectangular deep-ultraviolet detector array of Ga2O3 photoconductor with high photo response
Zeng Liu(刘增), Yu-Song Zhi(支钰崧), Mao-Lin Zhang(张茂林), Li-Li Yang(杨莉莉), Shan Li(李山), Zu-Yong Yan(晏祖勇), Shao-Hui Zhang(张少辉), Dao-You Guo(郭道友), Pei-Gang Li(李培刚), Yu-Feng Guo(郭宇锋), and Wei-Hua Tang(唐为华). Chin. Phys. B, 2022, 31(8): 088503.
[12] Machine learning potential aided structure search for low-lying candidates of Au clusters
Tonghe Ying(应通和), Jianbao Zhu(朱健保), and Wenguang Zhu(朱文光). Chin. Phys. B, 2022, 31(7): 078402.
[13] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[14] Dynamical signatures of the one-dimensional deconfined quantum critical point
Ning Xi(西宁) and Rong Yu(俞榕). Chin. Phys. B, 2022, 31(5): 057501.
[15] Evaluation of performance of machine learning methods in mining structure—property data of halide perovskite materials
Ruoting Zhao(赵若廷), Bangyu Xing(邢邦昱), Huimin Mu(穆慧敏), Yuhao Fu(付钰豪), and Lijun Zhang(张立军). Chin. Phys. B, 2022, 31(5): 056302.
No Suggested Reading articles found!