CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Current-driven dynamics of skyrmion bubbles in achiral uniaxial magnets |
Yaodong Wu(吴耀东)1,3, Jialiang Jiang(蒋佳良)3, and Jin Tang(汤进)2,3,† |
1 School of Physics and Materials Engineering, Hefei Normal University, Hefei 230601, China; 2 School of Physics and Optoelectronics Engineering Science, Anhui University, Hefei 230601, China; 3 Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory, HFIPS, Chinese Academy of Sciences, Hefei 230031, China |
|
|
Abstract We report dynamics of skyrmion bubbles driven by spin-transfer torque in achiral ferromagnetic nanostripes using micromagnetic simulations. In a three-dimensional uniaxial ferromagnet with a quality factor that is smaller than 1, the skyrmion bubble is forced to stay at the central nanostripe by a repulsive force from the geometry border. The coherent motion of skyrmion bubbles in the nanostripe can be realized by increasing the quality factor to ~ 3.8. Our results should propel the design for future spintronic devices such as artificial neural computing and racetrack memory based on dipole-stabilized skyrmion bubbles.
|
Received: 18 March 2022
Revised: 24 April 2022
Accepted manuscript online: 07 May 2022
|
PACS:
|
75.60.Ch
|
(Domain walls and domain structure)
|
|
Fund: This work was supported by the National Natural Science Foundation of China (Grant Nos. 12174396 and 12104123). |
Corresponding Authors:
Jin Tang
E-mail: jintang@ahu.edu.cn
|
Cite this article:
Yaodong Wu(吴耀东), Jialiang Jiang(蒋佳良), and Jin Tang(汤进) Current-driven dynamics of skyrmion bubbles in achiral uniaxial magnets 2022 Chin. Phys. B 31 077504
|
[1] Mühlbauer S, Binz B, Jonietz F, Pfleiderer C, Rosch A, Neubauer A, Georgii R and Böni P 2009 Science 323 915 [2] Nagaosa N and Tokura Y 2013 Nat. Nanotechnol. 8 899 [3] Zhou Y 2019 Natl. Sci. Rev. 6 210 [4] Tang J, Wu Y, Wang W, Kong L, Lv B, Wei W, Zang J, Tian M and Du H 2021 Nat. Nanotechnol. 16 1086 [5] Marrows C H and Zeissler K 2021 Appl. Phys. Lett. 119 250502 [6] Luo S and You L 2021 APL Mater. 9 050901 [7] Leonov A O, Loudon J C and Bogdanov A N 2016 Appl. Phys. Lett. 109 172404 [8] Everschor-Sitte K, Masell J, Reeve R M and Kläui M 2018 J. Appl. Phys. 124 240901 [9] Tang J, Kong L, Wang W, Du H and Tian M 2019 Chin. Phys. B 28 087503 [10] Jonietz F, Mühlbauer S, Pfleiderer C, Neubauer A, Münzer W, Bauer A, Adams T, Georgii R, Böni P and Duine R 2010 Science 330 1648 [11] Yu G, Upadhyaya P, Shao Q, Wu H, Yin G, Li X, He C, Jiang W, Han X, Amiri P K and Wang K L 2017 Nano Lett. 17 261 [12] Liu J, Wang Z, Xu T, Zhou H, Zhao L, Je S G, Im M Y, Fang L and Jiang W 2022 Chin. Phys. Lett. 39 017501 [13] Iwasaki J, Mochizuki M and Nagaosa N 2013 Nat. Commun. 4 1463 [14] Iwasaki J, Mochizuki M and Nagaosa N 2013 Nat. Nanotechnol. 8 742 [15] Sampaio J, Cros V, Rohart S, Thiaville A and Fert A 2013 Nat. Nanotechnol. 8 839 [16] Woo S, Litzius K, Kruger B, Im M Y, Caretta L, Richter K, Mann M, Krone A, Reeve R M, Weigand M, Agrawal P, Lemesh I, Mawass M A, Fischer P, Klaui M and Beach G S D 2016 Nat. Mater. 15 501 [17] Jiang W, Zhang X, Yu G, Zhang W, Wang X, Benjamin Jungfleisch M, Pearson J E, Cheng X, Heinonen O, Wang K L, Zhou Y, Hoffmann A and Velthuis S G E 2017 Nat. Phys. 13 162 [18] Tang J, Kong L, Wu Y, Wang W, Chen Y, Wang Y, Li J, Soh Y, Xiong Y, Tian M and Du H 2020 ACS Nano 14 10986 [19] Wei W, Tang J, Wu Y, Wang Y, Jiang J, Li J, Soh Y, Xiong Y, Tian M and Du H 2021 Adv. Mater. 33 2101610 [20] Montoya S A, Couture S, Chess J J, Lee J C T, Kent N, Henze D, Sinha S K, Im M Y, Kevan S D, Fischer P, McMorran B J, Lomakin V, Roy S and Fullerton E E 2017 Phys. Rev. B 95 024415 [21] Yu X, Mostovoy M, Tokunaga Y, Zhang W, Kimoto K, Matsui Y, Kaneko Y, Nagaosa N and Tokura Y 2012 Proc. Natl. Acad. Sci. 109 8856 [22] Tang J, Wu Y, Kong L, Wang W, Chen Y, Wang Y, Soh Y, Xiong Y, Tian M and Du H 2021 Natl. Sci. Rev. 8 nwaa200 [23] Malozemoff A and Slonczewski J C 2016 Magnetic domain walls in bubble materials:advances in materials and device research (Academic Press) [24] Wu Y, Kong L, Wang Y, Li J, Xiong Y and Tang J 2021 Appl. Phys. Lett. 118 122406 [25] Wu Y, Tang J, Lyu B, Kong L, Wang Y, Li J, Soh Y, Xiong Y, Tian M and Du H 2021 Appl. Phys. Lett. 119 012402 [26] Dai Y Y, Wang H, Tao P, Yang T, Ren W J and Zhang Z D 2013 Phys. Rev. B 88 054403 [27] Tokura Y and Kanazawa N 2021 Chem. Rev. 121 2857 [28] Suzuki R 1986 Proc. IEEE 74 1582 [29] Eschenfelder A H 2012 Magnetic bubble technology (Springer Science & Business Media) [30] Jiang W, Upadhyaya P, Zhang W, Yu G, Jungfleisch M B, Fradin F Y, Pearson J E, Tserkovnyak Y, Wang K L, Heinonen O, te Velthuis S G E and Hoffmann A 2015 Science 349 283 [31] Vansteenkiste A, Leliaert J, Dvornik M, Helsen M, Garcia-Sanchez F and Van Waeyenberge B 2014 AIP Adv. 4 107133 [32] Zhang S and Li Z 2004 Phys. Rev. Lett. 93 127204 [33] Li S, Kang W, Huang Y, Zhang X, Zhou Y and Zhao W 2017 Nanotechnology 28 31LT01 [34] Chen X, Kang W, Zhu D, Zhang X, Lei N, Zhang Y, Zhou Y and Zhao W 2018 Nanoscale 10 6139 [35] Huang Y, Kang W, Zhang X, Zhou Y and Zhao W 2017 Nanotechnology 28 08LT02 [36] Song K M, Jeong J S, Pan B, Zhang X, Xia J, Cha S, Park T E, Kim K, Finizio S, Raabe J, Chang J, Zhou Y, Zhao W, Kang W, Ju H and Woo S 2020 Nat. Electron. 3 148 [37] Wu Y, Jiang J, Wang Y, Li J, Xiong Y and Kong L 2022 Appl. Phys. Lett. 120 042403 [38] Thiele A A 1973 Phys. Rev. Lett. 30 230 [39] Liu G-B, Li D, P F d C, Wang J, Liu W and Zhang Z D 2016 Chin. Phys. B 25 067203 [40] Gobel B and Mertig I 2021 Sci. Rep. 11 3020 [41] Zhang X, Zhao G P, Fangohr H, Liu J P, Xia W X, Xia J and Morvan F J 2015 Sci. Rep. 5 7643 [42] Abiodun O I, Jantan A, Omolara A E, Dada K V, Mohamed N A and Arshad H 2018 Heliyon 4 e00938 [43] Chu M, Kim B, Park S, Hwang H, Jeon M, Lee B H and Lee B 2015 IEEE Trans. Ind. Electron. 62 2410 [44] Borisyuk R M and Borisyuk G N 1997 Biosystems 40 3 [45] Ye J, Kim Y B, Millis A, Shraiman B, Majumdar P and Tešanović Z 1999 Phys. Rev. Lett. 83 3737 [46] Bruno P, Dugaev V K and Taillefumier M 2004 Phys. Rev. Lett. 93 096806 [47] Huang S X and Chien C L 2012 Phys. Rev. Lett. 108 267201 [48] Ritz R, Halder M, Franz C, Bauer A, Wagner M, Bamler R, Rosch A and Pfleiderer C 2013 Phys. Rev. B 87 134424 [49] Wang S S, Tang J, Wang W W, Kong L Y, Tian M L and Du H F 2019 J. Low Temp. Phys. 197 321 [50] Xia H, Song C, Jin C, Wang J, Wang J and Liu Q 2018 J. Magn. Magn. Mater. 458 57 [51] Ma T, Sharma A K, Saha R, Srivastava A K, Werner P, Vir P, Kumar V, Felser C and Parkin S S P 2020 Adv. Mater. 32 2002043 [52] Legrand W, Chauleau J-Y, Maccariello D, Reyren N, Collin S, Bouzehouane K, Jaouen N, Cros V and Fert A 2018 Sci. Adv. 4 eaat0415 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|