Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(7): 077504    DOI: 10.1088/1674-1056/ac6db1
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Current-driven dynamics of skyrmion bubbles in achiral uniaxial magnets

Yaodong Wu(吴耀东)1,3, Jialiang Jiang(蒋佳良)3, and Jin Tang(汤进)2,3,†
1 School of Physics and Materials Engineering, Hefei Normal University, Hefei 230601, China;
2 School of Physics and Optoelectronics Engineering Science, Anhui University, Hefei 230601, China;
3 Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory, HFIPS, Chinese Academy of Sciences, Hefei 230031, China
Abstract  We report dynamics of skyrmion bubbles driven by spin-transfer torque in achiral ferromagnetic nanostripes using micromagnetic simulations. In a three-dimensional uniaxial ferromagnet with a quality factor that is smaller than 1, the skyrmion bubble is forced to stay at the central nanostripe by a repulsive force from the geometry border. The coherent motion of skyrmion bubbles in the nanostripe can be realized by increasing the quality factor to ~ 3.8. Our results should propel the design for future spintronic devices such as artificial neural computing and racetrack memory based on dipole-stabilized skyrmion bubbles.
Keywords:  skyrmion bubbles      dynamic motion      artificial neural computing  
Received:  18 March 2022      Revised:  24 April 2022      Accepted manuscript online:  07 May 2022
PACS:  75.60.Ch (Domain walls and domain structure)  
Fund: This work was supported by the National Natural Science Foundation of China (Grant Nos. 12174396 and 12104123).
Corresponding Authors:  Jin Tang     E-mail:  jintang@ahu.edu.cn

Cite this article: 

Yaodong Wu(吴耀东), Jialiang Jiang(蒋佳良), and Jin Tang(汤进) Current-driven dynamics of skyrmion bubbles in achiral uniaxial magnets 2022 Chin. Phys. B 31 077504

[1] Mühlbauer S, Binz B, Jonietz F, Pfleiderer C, Rosch A, Neubauer A, Georgii R and Böni P 2009 Science 323 915
[2] Nagaosa N and Tokura Y 2013 Nat. Nanotechnol. 8 899
[3] Zhou Y 2019 Natl. Sci. Rev. 6 210
[4] Tang J, Wu Y, Wang W, Kong L, Lv B, Wei W, Zang J, Tian M and Du H 2021 Nat. Nanotechnol. 16 1086
[5] Marrows C H and Zeissler K 2021 Appl. Phys. Lett. 119 250502
[6] Luo S and You L 2021 APL Mater. 9 050901
[7] Leonov A O, Loudon J C and Bogdanov A N 2016 Appl. Phys. Lett. 109 172404
[8] Everschor-Sitte K, Masell J, Reeve R M and Kläui M 2018 J. Appl. Phys. 124 240901
[9] Tang J, Kong L, Wang W, Du H and Tian M 2019 Chin. Phys. B 28 087503
[10] Jonietz F, Mühlbauer S, Pfleiderer C, Neubauer A, Münzer W, Bauer A, Adams T, Georgii R, Böni P and Duine R 2010 Science 330 1648
[11] Yu G, Upadhyaya P, Shao Q, Wu H, Yin G, Li X, He C, Jiang W, Han X, Amiri P K and Wang K L 2017 Nano Lett. 17 261
[12] Liu J, Wang Z, Xu T, Zhou H, Zhao L, Je S G, Im M Y, Fang L and Jiang W 2022 Chin. Phys. Lett. 39 017501
[13] Iwasaki J, Mochizuki M and Nagaosa N 2013 Nat. Commun. 4 1463
[14] Iwasaki J, Mochizuki M and Nagaosa N 2013 Nat. Nanotechnol. 8 742
[15] Sampaio J, Cros V, Rohart S, Thiaville A and Fert A 2013 Nat. Nanotechnol. 8 839
[16] Woo S, Litzius K, Kruger B, Im M Y, Caretta L, Richter K, Mann M, Krone A, Reeve R M, Weigand M, Agrawal P, Lemesh I, Mawass M A, Fischer P, Klaui M and Beach G S D 2016 Nat. Mater. 15 501
[17] Jiang W, Zhang X, Yu G, Zhang W, Wang X, Benjamin Jungfleisch M, Pearson J E, Cheng X, Heinonen O, Wang K L, Zhou Y, Hoffmann A and Velthuis S G E 2017 Nat. Phys. 13 162
[18] Tang J, Kong L, Wu Y, Wang W, Chen Y, Wang Y, Li J, Soh Y, Xiong Y, Tian M and Du H 2020 ACS Nano 14 10986
[19] Wei W, Tang J, Wu Y, Wang Y, Jiang J, Li J, Soh Y, Xiong Y, Tian M and Du H 2021 Adv. Mater. 33 2101610
[20] Montoya S A, Couture S, Chess J J, Lee J C T, Kent N, Henze D, Sinha S K, Im M Y, Kevan S D, Fischer P, McMorran B J, Lomakin V, Roy S and Fullerton E E 2017 Phys. Rev. B 95 024415
[21] Yu X, Mostovoy M, Tokunaga Y, Zhang W, Kimoto K, Matsui Y, Kaneko Y, Nagaosa N and Tokura Y 2012 Proc. Natl. Acad. Sci. 109 8856
[22] Tang J, Wu Y, Kong L, Wang W, Chen Y, Wang Y, Soh Y, Xiong Y, Tian M and Du H 2021 Natl. Sci. Rev. 8 nwaa200
[23] Malozemoff A and Slonczewski J C 2016 Magnetic domain walls in bubble materials:advances in materials and device research (Academic Press)
[24] Wu Y, Kong L, Wang Y, Li J, Xiong Y and Tang J 2021 Appl. Phys. Lett. 118 122406
[25] Wu Y, Tang J, Lyu B, Kong L, Wang Y, Li J, Soh Y, Xiong Y, Tian M and Du H 2021 Appl. Phys. Lett. 119 012402
[26] Dai Y Y, Wang H, Tao P, Yang T, Ren W J and Zhang Z D 2013 Phys. Rev. B 88 054403
[27] Tokura Y and Kanazawa N 2021 Chem. Rev. 121 2857
[28] Suzuki R 1986 Proc. IEEE 74 1582
[29] Eschenfelder A H 2012 Magnetic bubble technology (Springer Science & Business Media)
[30] Jiang W, Upadhyaya P, Zhang W, Yu G, Jungfleisch M B, Fradin F Y, Pearson J E, Tserkovnyak Y, Wang K L, Heinonen O, te Velthuis S G E and Hoffmann A 2015 Science 349 283
[31] Vansteenkiste A, Leliaert J, Dvornik M, Helsen M, Garcia-Sanchez F and Van Waeyenberge B 2014 AIP Adv. 4 107133
[32] Zhang S and Li Z 2004 Phys. Rev. Lett. 93 127204
[33] Li S, Kang W, Huang Y, Zhang X, Zhou Y and Zhao W 2017 Nanotechnology 28 31LT01
[34] Chen X, Kang W, Zhu D, Zhang X, Lei N, Zhang Y, Zhou Y and Zhao W 2018 Nanoscale 10 6139
[35] Huang Y, Kang W, Zhang X, Zhou Y and Zhao W 2017 Nanotechnology 28 08LT02
[36] Song K M, Jeong J S, Pan B, Zhang X, Xia J, Cha S, Park T E, Kim K, Finizio S, Raabe J, Chang J, Zhou Y, Zhao W, Kang W, Ju H and Woo S 2020 Nat. Electron. 3 148
[37] Wu Y, Jiang J, Wang Y, Li J, Xiong Y and Kong L 2022 Appl. Phys. Lett. 120 042403
[38] Thiele A A 1973 Phys. Rev. Lett. 30 230
[39] Liu G-B, Li D, P F d C, Wang J, Liu W and Zhang Z D 2016 Chin. Phys. B 25 067203
[40] Gobel B and Mertig I 2021 Sci. Rep. 11 3020
[41] Zhang X, Zhao G P, Fangohr H, Liu J P, Xia W X, Xia J and Morvan F J 2015 Sci. Rep. 5 7643
[42] Abiodun O I, Jantan A, Omolara A E, Dada K V, Mohamed N A and Arshad H 2018 Heliyon 4 e00938
[43] Chu M, Kim B, Park S, Hwang H, Jeon M, Lee B H and Lee B 2015 IEEE Trans. Ind. Electron. 62 2410
[44] Borisyuk R M and Borisyuk G N 1997 Biosystems 40 3
[45] Ye J, Kim Y B, Millis A, Shraiman B, Majumdar P and Tešanović Z 1999 Phys. Rev. Lett. 83 3737
[46] Bruno P, Dugaev V K and Taillefumier M 2004 Phys. Rev. Lett. 93 096806
[47] Huang S X and Chien C L 2012 Phys. Rev. Lett. 108 267201
[48] Ritz R, Halder M, Franz C, Bauer A, Wagner M, Bamler R, Rosch A and Pfleiderer C 2013 Phys. Rev. B 87 134424
[49] Wang S S, Tang J, Wang W W, Kong L Y, Tian M L and Du H F 2019 J. Low Temp. Phys. 197 321
[50] Xia H, Song C, Jin C, Wang J, Wang J and Liu Q 2018 J. Magn. Magn. Mater. 458 57
[51] Ma T, Sharma A K, Saha R, Srivastava A K, Werner P, Vir P, Kumar V, Felser C and Parkin S S P 2020 Adv. Mater. 32 2002043
[52] Legrand W, Chauleau J-Y, Maccariello D, Reyren N, Collin S, Bouzehouane K, Jaouen N, Cros V and Fert A 2018 Sci. Adv. 4 eaat0415
[1] Non-volatile multi-state magnetic domain transformation in a Hall balance
Yang Gao(高阳), Jingyan Zhang(张静言), Pengwei Dou(窦鹏伟), Zhuolin Li(李卓霖), Zhaozhao Zhu(朱照照), Yaqin Guo(郭雅琴), Chaoqun Hu(胡超群), Weidu Qin(覃维都), Congli He(何聪丽), Shipeng Shen(申世鹏), Ying Zhang(张颖), and Shouguo Wang(王守国). Chin. Phys. B, 2022, 31(6): 067502.
[2] Generation of domain-wall solitons in an anomalous dispersion fiber ring laser
Wen-Yan Zhang(张文艳), Kun Yang(杨坤), Li-Jie Geng(耿利杰), Nan-Nan Liu(刘楠楠), Yun-Qi Hao(郝蕴琦), Tian-Hao Xian(贤天浩), and Li Zhan(詹黎). Chin. Phys. B, 2021, 30(11): 114212.
[3] Search for topological defect of axionlike model with cesium atomic comagnetometer
Yucheng Yang(杨雨成), Teng Wu(吴腾), Jianwei Zhang(张建玮), and Hong Guo(郭弘). Chin. Phys. B, 2021, 30(5): 050704.
[4] Exact soliton solutions in anisotropic ferromagnetic wires with Dzyaloshinskii-Moriya interaction
Qiu-Yan Li(李秋艳), Dun-Zhao(赵敦), and Zai-Dong Li(李再东). Chin. Phys. B, 2021, 30(1): 017504.
[5] Anomalous Josephson current in quantum anomalous Hall insulator-based superconducting junctions with a domain wall structure
Qing Yan(闫青), Yan-Feng Zhou(周彦峰), Qing-Feng Sun(孙庆丰). Chin. Phys. B, 2020, 29(9): 097401.
[6] Spin waves and transverse domain walls driven by spin waves: Role of damping
Zi-Xiang Zhao(赵梓翔), Peng-Bin He(贺鹏斌), Meng-Qiu Cai(蔡孟秋), Zai-Dong Li(李再东). Chin. Phys. B, 2020, 29(7): 077502.
[7] Enhanced structural and magnetic properties of microwave sintered Li-Ni-Co ferrites prepared by sol-gel method
Nandeibam Nilima, M Maisnam, Sumitra Phanjoubam. Chin. Phys. B, 2019, 28(2): 026101.
[8] Spin switching in antiferromagnets using Néel-order spin-orbit torques
P Wadley, K W Edmonds. Chin. Phys. B, 2018, 27(10): 107201.
[9] Lorentz transmission electron microscopy studies on topological magnetic domains
Li-Cong Peng(彭丽聪), Ying Zhang(张颖), Shu-Lan Zuo(左淑兰), Min He(何敏), Jian-Wang Cai(蔡建旺), Shou-Guo Wang(王守国), Hong-Xiang Wei(魏红祥), Jian-Qi Li(李建奇), Tong-Yun Zhao(赵同云), Bao-Gen Shen(沈保根). Chin. Phys. B, 2018, 27(6): 066802.
[10] Nonmonotonic effects of perpendicular magnetic anisotropy on current-driven vortex wall motions in magnetic nanostripes
Su Yuan-Chang (苏垣昌), Lei Hai-Yang (雷海洋), Hu Jing-Guo (胡经国). Chin. Phys. B, 2015, 24(9): 097506.
[11] Magnetization plateaus and frequency dispersion of hysteresis on frustrated dipolar array
Zhang You-Tian (张又天). Chin. Phys. B, 2015, 24(8): 087502.
[12] Temperature dependence of multi-jump magnetic switching process in epitaxial Fe/MgO (001) films
Hu Bo (胡泊), He Wei (何为), Ye Jun (叶军), Tang Jin (汤进), Zhang Yong-Sheng (张永圣), Syed Sheraz Ahmad, Zhang Xiang-Qun (张向群), Cheng Zhao-Hua (成昭华). Chin. Phys. B, 2015, 24(7): 077502.
[13] Model of hybrid interfacial domain wall in ferromagnetic/antiferromagnetic bilayers
Zhang Wen (章文), Zhai Ya (翟亚), Lu Mu (鹿牧), You Biao (游彪), Zhai Hong-Ru (翟宏如), Caroline G Morgan. Chin. Phys. B, 2015, 24(4): 047502.
[14] Dynamics of magnetization in ferromagnet with spin-transfer torque
Li Zai-Dong (李再东), He Peng-Bin (贺鹏斌), Liu Wu-Ming (刘伍明). Chin. Phys. B, 2014, 23(11): 117502.
[15] Exchange interaction between vortex and antivortex
Liu Yan (柳艳), Li Hua-Nan (李化南), Hu Yong (胡勇), Du An (杜安). Chin. Phys. B, 2014, 23(8): 087501.
No Suggested Reading articles found!