Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(10): 100501    DOI: 10.1088/1674-1056/ac6ee4
GENERAL Prev   Next  

Spin transfer nano-oscillator based on synthetic antiferromagnetic skyrmion pair assisted by perpendicular fixed magnetic field

Yun-Xu Ma(马云旭)1, Jia-Ning Wang(王佳宁)1, Zhao-Zhuo Zeng(曾钊卓)1, Ying-Yue Yuan(袁映月)1, Jin-Xia Yang(杨金霞)1, Hui-Bo Liu(刘慧博)1, Sen-Fu Zhang(张森富)1, Jian-Bo Wang(王建波)1,2, Chen-Dong Jin(金晨东)3, and Qing-Fang Liu(刘青芳)1,†
1. Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University, Lanzhou 730000, China;
2. Key Laboratory for Special Function Materials and Structural Design of the Ministry of Education, Lanzhou University, Lanzhou 730000, China;
3. College of Physics Science and Technology, Hebei University, Baoding 071002, China
Abstract  As a microwave generator, spin transfer nano-oscillator (STNO) based on skyrmion promises to become one of the next-generation spintronic devices. However, there still exist a few limitations to the practical applications. In this paper, we propose a new STNO based on synthetic antiferromagnetic (SAF) skyrmion pair assisted by a perpendicular fixed magnetic field. It is found that the oscillation frequency of this kind of STNO can reach up to 5.0 GHz, and the multiple oscillation peak with higher frequency can be realized under a fixed out-of-plane magnetic field. Further investigation shows that the skyrmion stability is improved by bilayer antiferromagnetic coupling, which guarantees the stability process of skyrmion under higher spin-polarized current density. Our results provide the alternative possibilities for designing new skyrmion-based STNO to further improve the oscillation frequency, and realize the output of multiple frequency microwave signal.
Keywords:  nano-oscillator      skyrmion      spin-polarized current      spintronic devices  
Received:  10 March 2022      Revised:  27 April 2022      Accepted manuscript online: 
PACS:  05.45.Xt (Synchronization; coupled oscillators)  
  12.39.Dc (Skyrmions)  
  72.25.Hg (Electrical injection of spin polarized carriers)  
  85.75.-d (Magnetoelectronics; spintronics: devices exploiting spin polarized transport or integrated magnetic fields)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12074158, 12174166, 12104197, and 12104124) and the Natural Science Foundation of Hebei Province, China (Grant No. A2021201008).
Corresponding Authors:  Qing-Fang Liu     E-mail:  liuqf@lzu.edu.cn

Cite this article: 

Yun-Xu Ma(马云旭), Jia-Ning Wang(王佳宁), Zhao-Zhuo Zeng(曾钊卓), Ying-Yue Yuan(袁映月), Jin-Xia Yang(杨金霞), Hui-Bo Liu(刘慧博), Sen-Fu Zhang(张森富), Jian-Bo Wang(王建波), Chen-Dong Jin(金晨东), and Qing-Fang Liu(刘青芳) Spin transfer nano-oscillator based on synthetic antiferromagnetic skyrmion pair assisted by perpendicular fixed magnetic field 2022 Chin. Phys. B 31 100501

[1] Zeng Z M, Finocchio G and Jiang H W 2013 Nanoscale 5 2219
[2] Fang B, Feng J F, Gan H D, Malmhall R, Huai Y M, Xiong R X, Wei H X, Han X F, Zhang B S and Zeng Z M 2016 AIP Adv. 6 125305
[3] Rippard W H, Pufall M R, Kaka S, Russek S E and Silva T J 2004 Phys. Rev. Lett. 92 027201
[4] Katine J A and Fullerton E E 2008 J. Magn. Magn. Mater. 320 1217
[5] Dussaux A, Georges B, Grollier J, Cros V, Khvalkovskiy A V, Fukushima A, Konoto M, Kubota H, Yakushiji K, Yuasa S, Zvezdin K A, Ando K and Fert A 2010 Nat. Commun. 1 8
[6] Grimaldi E, Dussaux A, Bortolotti P, Grollier J, Pillet G, Fukushima A, Kubota H, Yakushiji K, Yuasa S and Cros V 2014 Phys. Rev. B 89 104404
[7] Ruotolo A, Cros V, Georges B, Dussaux A, Grollier J, Deranlot C, Guillemet R, Bouzehouane K, Fusil S and Fert A 2009 Nat. Nanotechnol. 4 528
[8] Ma Y X, Song C K, Jin C D, Zhu Z T, Feng H M, Xia H Y, Wang J N, Zeng Z Z, Wang J B and Liu Q F 2020 J. Phys. D: Appl. Phys. 53 195004
[9] Mohseni S M, Sani S R, Persson J, Nguyen T N A, Chung S, Pogoryelov Y, Muduli P K, Iacocca E, Eklund A, Dumas R K, Bonetti S, Deac A, Hoefer M A and Å kerman J 2013 Science 339 1295
[10] Chung S, Mohseni S M, Sani S R, Iacocca E, Dumas R K, Nguyen T N A, Pogoryelov Y, Muduli P K, Eklund A, Hoefer M A and Å kerman J 2014 J. Appl. Phys. 115 172612
[11] Zhang S F, Wang J B, Zheng Q, Zhu Q Y, Liu X Y, Chen S J, Jin C D, Liu Q F, Jia C L and Xue D S 2015 New J. Phys. 17 023061
[12] Garcia-Sanchez F, Sampaio J, Reyren N, Cros V and Kim J V 2016 New J. Phys. 18 075011
[13] Jin C D, Wang J B, Wang W W, Song C K, Wang J S, Xia H Y and Liu Q F 2018 Phys. Rev. Appl. 9 044007
[14] Shen L C, Xia J, Zhao G P, Zhang X C, Ezawa M, Tretiakov O A, Liu X X and Zhou Y 2019 Appl. Phys. Lett. 114 042402
[15] Zhou Y, Iacocca E, Awad A A, Dumas R K, Zhang F C, Braun H B and Å kerman J 2015 Nat. Commun. 6 8193
[16] Feng Y H, Xia J, Qiu L, Cai X R, Shen L C, Morvan F J, Zhang X C, Zhou Y and Zhao G P 2019 J. Magn. Magn. Mater. 491 165610
[17] Nagaosa N and Tokura Y 2013 Nat. Nanotechnol. 8 899
[18] Mühlbauer S, Binz B, Jonietz F, Pfleiderer C, Rosch A, Neubauer A, Georgii R and Böni P 2009 Science 323 915
[19] Yu X Z, Onose Y, Kanazawa N, Park J H, Han J H, Matsui Y, Nagaosa N and Tokura Y 2010 Nature 465 901
[20] Huang S X and Chien C L 2012 Phys. Rev. Lett. 108 267201
[21] Heinze S, von Bergmann K, Menzel M, Brede J, Kubetzka A, Wiesendanger R, Bihlmayer G and Blügel S 2011 Nat. Phys. 7 713
[22] Jiang W J, Upadhyaya P, Zhang W, Yu G Q, Jungfleisch M B, Fradin F Y, Pearson J E, Tserkovnyak Y, Wang K L, Heinonen O, Velthuis S G E T and Hoffmann A 2015 Science 349 283
[23] Boulle O, Vogel J, Yang H X, Pizzini S, Chaves D D S, Locatelli A, Menteş T O, Sala A, Buda-Prejbeanu L D, Klein O, Belmeguenai M, Roussigné Y, Stashkevich A, Chérif S M, Aballe L, Foerster M, Chshiev M, Auffret S, Miron I M and Gaudin G 2016 Nat. Nanotechnol. 11 449
[24] Zhang X C, Zhou Y and Ezawa M 2016 Nat. Commun. 7 10293
[25] Liu X H, Edmonds K W, Zhou Z P and Wang K L 2020 Phys. Rev. Appl. 13 014059
[26] Liu X H, Deng Y C, Lan X K, Li R Z and Wang K Y 2021 Sci. China-Phys. Mech. Astron. 64 267511
[27] Dohi T, DuttaGupta S, Fukami S and Ohno H 2019 Nat. Commun. 10 5153
[28] Qiu L, Shen L C, Zhang X C, Zhou Y, Zhao G P, Xia W X, Luo H B and Liu J P 2021 Appl. Phys. Lett. 118 082403
[29] Feng Y H, Zhu H K, Zhang X and Xiang G 2022 J. Magn. Magn. Mater. 543 168641
[30] Fert A, Reyren N and Cros V 2017 Nat. Rev. Mater. 2 17031
[31] Nagaosa N and Tokura Y 2013 Nat. Nanotech. 8 899
[32] Sampaio J, Cros V, Rohart S, Thiaville A and Fert A 2013 Nat. Nanotech. 8 839
[33] Dohi T, DuttaGupta S, Fukami S and Ohno H 2019 Nat. Commun. 10 5153
[34] Donahue M J and Porter D G 1999 OOMMF User's Guide (Gaithersburg, MD: US Department of Commerce, Technology Administration, National Institute of Standards and Technology)
[35] Brataas A, Kent A D and Ohno H 2012 Nat. Mater. 11 372
[36] Jin C D, Zhang C L, Song C K, Wang J S, Xia H Y, Ma Y X, Wang J N, Wei Y R, Wang J B and Liu Q F 2019 Appl. Phys. Lett. 114 192401
[37] Zhang X C, Zhou Y and Ezawa M 2016 Nat. Commun. 7 10293
[38] Papanicolaou N and Tomaras T N 1991 Nucl. Phys. B 360 425
[39] Shen L C, Xia J, Zhao G P, Zhang X C, Ezawa M, Tretiakov O A, Liu X X and Zhou Y 2019 Appl. Phys. Lett. 114 042402
[40] Song C K, Ma Y X, Jin C D, Xia H Y, Wang J N, Zeng Z Z, Wang J B and Liu Q F 2020 Phys. Status Solidi RRL 14 2000249
[1] Skyrmion-based logic gates controlled by electric currents in synthetic antiferromagnet
Linlin Li(李林霖), Jia Luo(罗佳), Jing Xia(夏静), Yan Zhou(周艳), Xiaoxi Liu(刘小晰), and Guoping Zhao(赵国平). Chin. Phys. B, 2023, 32(1): 017506.
[2] Influence of Dzyaloshinskii-Moriya interaction on the magnetic vortex reversal in an off-centered nanocontact geometry
Hua-Nan Li(李化南), Tong-Xin Xue(薛彤鑫), Lei Chen(陈磊), Ying-Rui Sui(隋瑛瑞), and Mao-Bin Wei(魏茂彬). Chin. Phys. B, 2022, 31(9): 097501.
[3] Progress and challenges in magnetic skyrmionics
Haifeng Du(杜海峰) and Xiangrong Wang(王向荣). Chin. Phys. B, 2022, 31(8): 087507.
[4] Synchronization of nanowire-based spin Hall nano-oscillators
Biao Jiang(姜彪), Wen-Jun Zhang(张文君), Mehran Khan Alam, Shu-Yun Yu(于淑云), Guang-Bing Han(韩广兵), Guo-Lei Liu(刘国磊), Shi-Shen Yan(颜世申), and Shi-Shou Kang(康仕寿). Chin. Phys. B, 2022, 31(7): 077503.
[5] Current-driven dynamics of skyrmion bubbles in achiral uniaxial magnets
Yaodong Wu(吴耀东), Jialiang Jiang(蒋佳良), and Jin Tang(汤进). Chin. Phys. B, 2022, 31(7): 077504.
[6] Non-volatile multi-state magnetic domain transformation in a Hall balance
Yang Gao(高阳), Jingyan Zhang(张静言), Pengwei Dou(窦鹏伟), Zhuolin Li(李卓霖), Zhaozhao Zhu(朱照照), Yaqin Guo(郭雅琴), Chaoqun Hu(胡超群), Weidu Qin(覃维都), Congli He(何聪丽), Shipeng Shen(申世鹏), Ying Zhang(张颖), and Shouguo Wang(王守国). Chin. Phys. B, 2022, 31(6): 067502.
[7] Skyrmion transport driven by pure voltage generated strain gradient
Shan Qiu(邱珊), Jia-Hao Liu(刘嘉豪), Ya-Bo Chen(陈亚博), Yun-Ping Zhao(赵云平), Bo Wei(危波), and Liang Fang(方粮). Chin. Phys. B, 2022, 31(11): 117701.
[8] Angle-dependent spin wave spectra of permalloy ring arrays
Shuxuan Wu(吴书旋), Zengtai Zhu(朱增泰), Yunxu Ma(马云旭), Jinwu Wei(魏晋武), Senfu Zhang(张森富), Jianbo Wang(王建波), and Qingfang Liu(刘青芳). Chin. Phys. B, 2022, 31(11): 117505.
[9] Voltage-controllable magnetic skyrmion dynamics for spiking neuron device applications
Ming-Min Zhu(朱明敏), Shu-Ting Cui(崔淑婷), Xiao-Fei Xu(徐晓飞), Sheng-Bin Shi(施胜宾), Di-Qing Nian(年迪青), Jing Luo(罗京), Yang Qiu(邱阳), Han Yang(杨浛), Guo-Liang Yu(郁国良), and Hao-Miao Zhou (周浩淼). Chin. Phys. B, 2022, 31(1): 018503.
[10] Zero-field skyrmions in FeGe thin films stabilized through attaching a perpendicularly magnetized single-domain Ni layer
Zi-Bo Zhang(张子博) and Yong Hu(胡勇). Chin. Phys. B, 2021, 30(7): 077503.
[11] Experiments and SPICE simulations of double MgO-based perpendicular magnetic tunnel junction
Qiuyang Li(李求洋), Penghe Zhang(张蓬鹤), Haotian Li(李浩天), Lina Chen(陈丽娜), Kaiyuan Zhou(周恺元), Chunjie Yan(晏春杰), Liyuan Li(李丽媛), Yongbing Xu(徐永兵), Weixin Zhang(张卫欣), Bo Liu(刘波), Hao Meng(孟浩), Ronghua Liu(刘荣华), and Youwei Du(都有为). Chin. Phys. B, 2021, 30(4): 047504.
[12] Magnetic two-dimensional van der Waals materials forspintronic devices
Yu Zhang(张雨), Hongjun Xu(许洪军), Jiafeng Feng(丰家峰), Hao Wu(吴昊), Guoqiang Yu(于国强), and Xiufeng Han(韩秀峰). Chin. Phys. B, 2021, 30(11): 118504.
[13] Adjustable half-skyrmion chains induced by SU(3) spin-orbit coupling in rotating Bose-Einstein condensates
Li Wang(王力), Ji Li(李吉), Xiao-Lin Zhou(周晓林), Xiang-Rong Chen(陈向荣), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2021, 30(11): 110312.
[14] Recent progress on excitation and manipulation of spin-waves in spin Hall nano-oscillators
Liyuan Li(李丽媛), Lina Chen(陈丽娜), Ronghua Liu(刘荣华), and Youwei Du(都有为). Chin. Phys. B, 2020, 29(11): 117102.
[15] Giant topological Hall effect of ferromagnetic kagome metal Fe3Sn2
Qi Wang(王琦), Qiangwei Yin(殷蔷薇), Hechang Lei(雷和畅). Chin. Phys. B, 2020, 29(1): 017101.
No Suggested Reading articles found!