|
|
Spin transfer nano-oscillator based on synthetic antiferromagnetic skyrmion pair assisted by perpendicular fixed magnetic field |
Yun-Xu Ma(马云旭)1, Jia-Ning Wang(王佳宁)1, Zhao-Zhuo Zeng(曾钊卓)1, Ying-Yue Yuan(袁映月)1, Jin-Xia Yang(杨金霞)1, Hui-Bo Liu(刘慧博)1, Sen-Fu Zhang(张森富)1, Jian-Bo Wang(王建波)1,2, Chen-Dong Jin(金晨东)3, and Qing-Fang Liu(刘青芳)1,† |
1. Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University, Lanzhou 730000, China; 2. Key Laboratory for Special Function Materials and Structural Design of the Ministry of Education, Lanzhou University, Lanzhou 730000, China; 3. College of Physics Science and Technology, Hebei University, Baoding 071002, China |
|
|
Abstract As a microwave generator, spin transfer nano-oscillator (STNO) based on skyrmion promises to become one of the next-generation spintronic devices. However, there still exist a few limitations to the practical applications. In this paper, we propose a new STNO based on synthetic antiferromagnetic (SAF) skyrmion pair assisted by a perpendicular fixed magnetic field. It is found that the oscillation frequency of this kind of STNO can reach up to 5.0 GHz, and the multiple oscillation peak with higher frequency can be realized under a fixed out-of-plane magnetic field. Further investigation shows that the skyrmion stability is improved by bilayer antiferromagnetic coupling, which guarantees the stability process of skyrmion under higher spin-polarized current density. Our results provide the alternative possibilities for designing new skyrmion-based STNO to further improve the oscillation frequency, and realize the output of multiple frequency microwave signal.
|
Received: 10 March 2022
Revised: 27 April 2022
Accepted manuscript online:
|
PACS:
|
05.45.Xt
|
(Synchronization; coupled oscillators)
|
|
12.39.Dc
|
(Skyrmions)
|
|
72.25.Hg
|
(Electrical injection of spin polarized carriers)
|
|
85.75.-d
|
(Magnetoelectronics; spintronics: devices exploiting spin polarized transport or integrated magnetic fields)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12074158, 12174166, 12104197, and 12104124) and the Natural Science Foundation of Hebei Province, China (Grant No. A2021201008). |
Corresponding Authors:
Qing-Fang Liu
E-mail: liuqf@lzu.edu.cn
|
Cite this article:
Yun-Xu Ma(马云旭), Jia-Ning Wang(王佳宁), Zhao-Zhuo Zeng(曾钊卓), Ying-Yue Yuan(袁映月), Jin-Xia Yang(杨金霞), Hui-Bo Liu(刘慧博), Sen-Fu Zhang(张森富), Jian-Bo Wang(王建波), Chen-Dong Jin(金晨东), and Qing-Fang Liu(刘青芳) Spin transfer nano-oscillator based on synthetic antiferromagnetic skyrmion pair assisted by perpendicular fixed magnetic field 2022 Chin. Phys. B 31 100501
|
[1] Zeng Z M, Finocchio G and Jiang H W 2013 Nanoscale 5 2219 [2] Fang B, Feng J F, Gan H D, Malmhall R, Huai Y M, Xiong R X, Wei H X, Han X F, Zhang B S and Zeng Z M 2016 AIP Adv. 6 125305 [3] Rippard W H, Pufall M R, Kaka S, Russek S E and Silva T J 2004 Phys. Rev. Lett. 92 027201 [4] Katine J A and Fullerton E E 2008 J. Magn. Magn. Mater. 320 1217 [5] Dussaux A, Georges B, Grollier J, Cros V, Khvalkovskiy A V, Fukushima A, Konoto M, Kubota H, Yakushiji K, Yuasa S, Zvezdin K A, Ando K and Fert A 2010 Nat. Commun. 1 8 [6] Grimaldi E, Dussaux A, Bortolotti P, Grollier J, Pillet G, Fukushima A, Kubota H, Yakushiji K, Yuasa S and Cros V 2014 Phys. Rev. B 89 104404 [7] Ruotolo A, Cros V, Georges B, Dussaux A, Grollier J, Deranlot C, Guillemet R, Bouzehouane K, Fusil S and Fert A 2009 Nat. Nanotechnol. 4 528 [8] Ma Y X, Song C K, Jin C D, Zhu Z T, Feng H M, Xia H Y, Wang J N, Zeng Z Z, Wang J B and Liu Q F 2020 J. Phys. D: Appl. Phys. 53 195004 [9] Mohseni S M, Sani S R, Persson J, Nguyen T N A, Chung S, Pogoryelov Y, Muduli P K, Iacocca E, Eklund A, Dumas R K, Bonetti S, Deac A, Hoefer M A and Å kerman J 2013 Science 339 1295 [10] Chung S, Mohseni S M, Sani S R, Iacocca E, Dumas R K, Nguyen T N A, Pogoryelov Y, Muduli P K, Eklund A, Hoefer M A and Å kerman J 2014 J. Appl. Phys. 115 172612 [11] Zhang S F, Wang J B, Zheng Q, Zhu Q Y, Liu X Y, Chen S J, Jin C D, Liu Q F, Jia C L and Xue D S 2015 New J. Phys. 17 023061 [12] Garcia-Sanchez F, Sampaio J, Reyren N, Cros V and Kim J V 2016 New J. Phys. 18 075011 [13] Jin C D, Wang J B, Wang W W, Song C K, Wang J S, Xia H Y and Liu Q F 2018 Phys. Rev. Appl. 9 044007 [14] Shen L C, Xia J, Zhao G P, Zhang X C, Ezawa M, Tretiakov O A, Liu X X and Zhou Y 2019 Appl. Phys. Lett. 114 042402 [15] Zhou Y, Iacocca E, Awad A A, Dumas R K, Zhang F C, Braun H B and Å kerman J 2015 Nat. Commun. 6 8193 [16] Feng Y H, Xia J, Qiu L, Cai X R, Shen L C, Morvan F J, Zhang X C, Zhou Y and Zhao G P 2019 J. Magn. Magn. Mater. 491 165610 [17] Nagaosa N and Tokura Y 2013 Nat. Nanotechnol. 8 899 [18] Mühlbauer S, Binz B, Jonietz F, Pfleiderer C, Rosch A, Neubauer A, Georgii R and Böni P 2009 Science 323 915 [19] Yu X Z, Onose Y, Kanazawa N, Park J H, Han J H, Matsui Y, Nagaosa N and Tokura Y 2010 Nature 465 901 [20] Huang S X and Chien C L 2012 Phys. Rev. Lett. 108 267201 [21] Heinze S, von Bergmann K, Menzel M, Brede J, Kubetzka A, Wiesendanger R, Bihlmayer G and Blügel S 2011 Nat. Phys. 7 713 [22] Jiang W J, Upadhyaya P, Zhang W, Yu G Q, Jungfleisch M B, Fradin F Y, Pearson J E, Tserkovnyak Y, Wang K L, Heinonen O, Velthuis S G E T and Hoffmann A 2015 Science 349 283 [23] Boulle O, Vogel J, Yang H X, Pizzini S, Chaves D D S, Locatelli A, Menteş T O, Sala A, Buda-Prejbeanu L D, Klein O, Belmeguenai M, Roussigné Y, Stashkevich A, Chérif S M, Aballe L, Foerster M, Chshiev M, Auffret S, Miron I M and Gaudin G 2016 Nat. Nanotechnol. 11 449 [24] Zhang X C, Zhou Y and Ezawa M 2016 Nat. Commun. 7 10293 [25] Liu X H, Edmonds K W, Zhou Z P and Wang K L 2020 Phys. Rev. Appl. 13 014059 [26] Liu X H, Deng Y C, Lan X K, Li R Z and Wang K Y 2021 Sci. China-Phys. Mech. Astron. 64 267511 [27] Dohi T, DuttaGupta S, Fukami S and Ohno H 2019 Nat. Commun. 10 5153 [28] Qiu L, Shen L C, Zhang X C, Zhou Y, Zhao G P, Xia W X, Luo H B and Liu J P 2021 Appl. Phys. Lett. 118 082403 [29] Feng Y H, Zhu H K, Zhang X and Xiang G 2022 J. Magn. Magn. Mater. 543 168641 [30] Fert A, Reyren N and Cros V 2017 Nat. Rev. Mater. 2 17031 [31] Nagaosa N and Tokura Y 2013 Nat. Nanotech. 8 899 [32] Sampaio J, Cros V, Rohart S, Thiaville A and Fert A 2013 Nat. Nanotech. 8 839 [33] Dohi T, DuttaGupta S, Fukami S and Ohno H 2019 Nat. Commun. 10 5153 [34] Donahue M J and Porter D G 1999 OOMMF User's Guide (Gaithersburg, MD: US Department of Commerce, Technology Administration, National Institute of Standards and Technology) [35] Brataas A, Kent A D and Ohno H 2012 Nat. Mater. 11 372 [36] Jin C D, Zhang C L, Song C K, Wang J S, Xia H Y, Ma Y X, Wang J N, Wei Y R, Wang J B and Liu Q F 2019 Appl. Phys. Lett. 114 192401 [37] Zhang X C, Zhou Y and Ezawa M 2016 Nat. Commun. 7 10293 [38] Papanicolaou N and Tomaras T N 1991 Nucl. Phys. B 360 425 [39] Shen L C, Xia J, Zhao G P, Zhang X C, Ezawa M, Tretiakov O A, Liu X X and Zhou Y 2019 Appl. Phys. Lett. 114 042402 [40] Song C K, Ma Y X, Jin C D, Xia H Y, Wang J N, Zeng Z Z, Wang J B and Liu Q F 2020 Phys. Status Solidi RRL 14 2000249 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|