Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(6): 067502    DOI: 10.1088/1674-1056/ac65f5
RAPID COMMUNICATION Prev   Next  

Non-volatile multi-state magnetic domain transformation in a Hall balance

Yang Gao(高阳)1,2, Jingyan Zhang(张静言)3,†, Pengwei Dou(窦鹏伟)3, Zhuolin Li(李卓霖)2, Zhaozhao Zhu(朱照照)2,4, Yaqin Guo(郭雅琴)1, Chaoqun Hu(胡超群)1, Weidu Qin(覃维都)1, Congli He(何聪丽)1, Shipeng Shen(申世鹏)1, Ying Zhang(张颖)2,4,‡, and Shouguo Wang(王守国)1,§
1 Institute of Advanced Materials, Beijing Normal University, Beijing 100875, China;
2 Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
3 School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China;
4 Songshan Lake Materials Laboratory, Dongguan 523808, China
Abstract  High performance of the generation, stabilization and manipulation of magnetic skyrmions prompts the application of topological multilayers in spintronic devices. Skyrmions in synthetic antiferromagnets (SAF) have been considered as a promising alternative to overcome the limitations of ferromagnetic skyrmions, such as the skyrmion Hall effect and stray magnetic field. Here, by using the Lorentz transmission electron microscopy, the interconversion between the single domain, labyrinth domain and skyrmion state can be observed by the combined manipulation of electric current and magnetic field in a Hall balance (a SAF with the core structure of [Co/Pt]4/NiO/[Co/Pt]4 showing perpendicular magnetic anisotropy). Furthermore, high-density room temperature skyrmions can be stabilized at zero field while the external stimulus is removed and the skyrmion density is tunable. The generation and manipulation method of skyrmions in Hall balance in this study opens up a promising way to engineer SAF-skyrmion-based memory devices.
Keywords:  magnetic skyrmion      Hall balance      electromagnetic coordinated manipulation      Lorentz transmission electron microscopy (LTEM)  
Received:  28 March 2022      Revised:  03 April 2022      Accepted manuscript online:  11 April 2022
PACS:  75.60.Ch (Domain walls and domain structure)  
  75.50.Ee (Antiferromagnetics)  
  75.70.Cn (Magnetic properties of interfaces (multilayers, superlattices, heterostructures))  
  68.37.Lp (Transmission electron microscopy (TEM))  
Fund: This work was supported by the Science Center of the National Science Foundation of China (Grant No. 52088101), the National Natural Science Foundation of China (Grant Nos. 11874408, 52130103, 51901025, and 11904025), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB33030100), and the Youth Innovation Promotion Association of Chinese Academy of Sciences (Grant No. CAS Y201903).
Corresponding Authors:  Jingyan Zhang, Ying Zhang, Shouguo Wang     E-mail:  jyzhang@ustb.edu.cn;zhangy@iphy.ac.cn;sgwang@bnu.edu.cn

Cite this article: 

Yang Gao(高阳), Jingyan Zhang(张静言), Pengwei Dou(窦鹏伟), Zhuolin Li(李卓霖), Zhaozhao Zhu(朱照照), Yaqin Guo(郭雅琴), Chaoqun Hu(胡超群), Weidu Qin(覃维都), Congli He(何聪丽), Shipeng Shen(申世鹏), Ying Zhang(张颖), and Shouguo Wang(王守国) Non-volatile multi-state magnetic domain transformation in a Hall balance 2022 Chin. Phys. B 31 067502

[1] Rossler U K, Bogdanov A N and Pfleiderer C 2006 Nature 442 797
[2] Muhlbauer S, Binz B, Jonietz F, Pfleiderer C, Rosch A, Neubauer A, Georgii R and Boni P 2009 Science 323 915
[3] Fert A, Cros V and Sampaio J 2013 Nat. Nanotechnol. 8 152
[4] Tomasello R, Martinez E, Zivieri R, Torres L, Carpentieri M and Finocchio G 2014 Sci. Rep. 4 6784
[5] Wang Y, Wang L, Xia J, Lai Z X, Tian G, Zhang X C, Hou Z P, Gao X S, Mi W B, Feng C, Zeng M, Zhou G F, Yu G H, Wu G H, Zhou Y, Wang W H, Zhang X X and Liu J M 2020 Nat. Commun. 11 3577
[6] Münzer W, Neubauer A, Adams T, Mühlbauer S, Franz C, Jonietz F, Georgii R, Böni P, Pedersen B, Schmidt M, Rosch A and Pfleiderer C 2010 Phys. Rev. B 81 041203
[7] Yu X Z, Onose Y, Kanazawa N, Park J H, Han J H, Matsui Y, Nagaosa N and Tokura Y 2010 Nature 465 901
[8] Yu X Z, Kanazawa N, Onose Y, Kimoto K, Zhang W Z, Ishiwata S, Matsui Y and Tokura Y 2011 Nat. Mater. 10 106
[9] Heinze S, von Bergmann K, Menzel M, Brede J, Kubetzka A, Wiesendanger R, Bihlmayer G and Blügel S 2011 Nat. Phys. 7 713
[10] Pollard S D, Garlow J A, Yu J W, Wang Z, Zhu Y M and Yang H 2017 Nat. Commun. 8 14761
[11] He M, Li G, Zhu Z Z, Zhang Y, Peng L C, Li R, Li J Q, Wei H X, Zhao T Y, Zhang X G, Wang S G, Lin S Z, Gu L, Yu G Q, Cai J W and Shen B G 2018 Phys. Rev. B 97 174419
[12] He M, Peng L C, Zhu Z Z, Li G, Cai J W, Li J Q, Wei H X, Gu L, Wang S G, Zhao T Y, Shen B G and Zhang Y 2017 Appl. Phys. Lett. 111 202403
[13] Yu G Q, Upadhyaya P, Li X, Li W Y, Kim S K, Fan Y B, Wong K L, Tserkovnyak Y, Amiri P K and Wang K L 2016 Nano Lett. 16 1981
[14] Moreau-Luchaire C, Mouta S C, Reyren N, Sampaio J, Vaz C A, Van Horne N, Bouzehouane K, Garcia K, Deranlot C, Warnicke P, Wohlhuter P, George J M, Weigand M, Raabe J, Cros V and Fert A 2016 Nat. Nanotechnol. 11 444
[15] Soumyanarayanan A, Raju M, Gonzalez Oyarce A L, Tan A K C, Im M Y, Petrovic A P, Ho P, Khoo K H, Tran M, Gan C K, Ernult F and Panagopoulos C 2017 Nat. Mater. 16 898
[16] Zhou Y and Ezawa M 2014 Nat. Commun. 5 4652
[17] Iwasaki J, Mochizuki M and Nagaosa N 2013 Nat. Nanotechnol. 8 742
[18] Sampaio J, Cros V, Rohart S, Thiaville A and Fert A 2013 Nat. Nanotechnol. 8 839
[19] Lin S Z 2016 Phys. Rev. B 94 020402
[20] Romming N, Hanneken C, Menzel M, Bickel J E, Wolter B, von Bergmann K, Kubetzka A and Wiesendanger R 2013 Science 341 636
[21] Buttner F, Lemesh I and Beach G S D 2018 Sci. Rep. 8 4464
[22] Thiaville A, Rohart S, Jué É, Cros V and Fert A 2012 Europhys. Lett. 100 57002
[23] Litzius K, Lemesh I, Kruger B, Bassirian P, Caretta L, Richter K, Buttner F, Sato K, Tretiakov O A, Forster J, Reeve R M, Weigand M, Bykova L, Stoll H, Schutz G, Beach G S D and Klaui M 2017 Nat. Phys. 13 170
[24] Jiang W J, Zhang X C, Yu G Q, Zhang W, Wang X, Jungfleisch M B, Pearson J E, Cheng X M, Heinonen O, Wang K L, Zhou Y, Hoffmann A and te Velthuis S G E 2017 Nat. Phys. 13 162
[25] Barker J and Tretiakov O A 2016 Phys. Rev. Lett. 116 147203
[26] Jungwirth T, Marti X, Wadley P and Wunderlich J 2016 Nat. Nanotechnol. 11 231
[27] Zhang J Y, Yang G, Wang S G, Liu J L, Wang R M, Amsellem E, Kohn A and Yu G H 2015 Appl. Phys. Lett. 106 152401
[28] Zhang S L, Liu Y, Collins-Mclntyre L J, Hesjedal T, Zhang J Y, Wang S G and Yu G H 2013 Sci. Rep. 3 2087
[29] Zhang X C, Zhou Y and Ezawa M 2016 Nat. Commun. 7 10293
[30] Zhang J Y, Zhang Y, Gao Y, Zhao G P, Qiu L, Wang K Y, Dou P W, Peng W L, Zhuang Y, Wu Y F, Yu G Q, Zhu Z Z, Zhao Y C, Guo Y Q, Zhu T, Cai J W, Shen B G and Wang S G 2020 Adv. Mater. 32 1907452
[31] Chen R Y, Gao Y, Zhang X C, Zhang R Q, Yin S Q, Chen X Z, Zhou X F, Zhou Y J, Xia J, Zhou Y, Wang S G, Pan F, Zhang Y and Song C 2020 Nano Lett. 20 3299
[32] Peng L C, Zhang Y, He M, Ding B, Wang W H, Tian H F, Li J Q, Wang S G, Cai J W, Wu G H, Liu J P, Kramer M J and Shen B G 2017 Npj Quantum Materials 2 30
[33] Peng L C, Zhang Y, He M, Ding B, Wang W H, Li J Q, Cai J W, Wang S G, Wu G H and Shen B G 2018 J. Phys.-Condens. Mat. 30 065803
[34] Yang S, Moon K W, Ju T S, Kim C, Kim H J, Kim J, Tran B X, Hong J I and Hwang C 2021 Adv. Mater. 33 2104406
[35] Yang M Y, Cai K M, Ju H L, Edmonds K W, Yang G, Liu S, Li B H, Zhang B, Sheng Y, Wang S G, Ji Y and Wang K Y 2016 Sci. Rep. 6 20778
[36] Cai K M, Yang M Y, Ju H L, Wang S M, Ji Y, Li B H, Edmonds K W, Sheng Y, Zhang B, Zhang N, Liu S, Zheng H Z and Wang K Y 2017 Nat. Mater. 16 712
[37] Cao Y, Sheng Y, Edmonds K W, Ji Y, Zheng H Z and Wang K Y 2020 Adv. Mater. 32 1907929
[38] Cao Y, Rushforth A, Sheng Y, Zheng H Z and Wang K Y 2019 Adv. Funct. Mater. 29 1808104
[1] Progress and challenges in magnetic skyrmionics
Haifeng Du(杜海峰) and Xiangrong Wang(王向荣). Chin. Phys. B, 2022, 31(8): 087507.
[2] Voltage-controllable magnetic skyrmion dynamics for spiking neuron device applications
Ming-Min Zhu(朱明敏), Shu-Ting Cui(崔淑婷), Xiao-Fei Xu(徐晓飞), Sheng-Bin Shi(施胜宾), Di-Qing Nian(年迪青), Jing Luo(罗京), Yang Qiu(邱阳), Han Yang(杨浛), Guo-Liang Yu(郁国良), and Hao-Miao Zhou (周浩淼). Chin. Phys. B, 2022, 31(1): 018503.
[3] Lorentz transmission electron microscopy for magnetic skyrmions imaging
Jin Tang(汤进), Lingyao Kong(孔令尧), Weiwei Wang(王伟伟), Haifeng Du(杜海峰), Mingliang Tian(田明亮). Chin. Phys. B, 2019, 28(8): 087503.
[4] Lorentz transmission electron microscopy studies on topological magnetic domains
Li-Cong Peng(彭丽聪), Ying Zhang(张颖), Shu-Lan Zuo(左淑兰), Min He(何敏), Jian-Wang Cai(蔡建旺), Shou-Guo Wang(王守国), Hong-Xiang Wei(魏红祥), Jian-Qi Li(李建奇), Tong-Yun Zhao(赵同云), Bao-Gen Shen(沈保根). Chin. Phys. B, 2018, 27(6): 066802.
No Suggested Reading articles found!