Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(11): 117302    DOI: 10.1088/1674-1056/ac7ccf
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Ozone oxidation of 4H-SiC and flat-band voltage stability of SiC MOS capacitors

Zhi-Peng Yin(尹志鹏)1, Sheng-Sheng Wei(尉升升)1, Jiao Bai(白娇)1, Wei-Wei Xie(谢威威)1, Zhao-Hui Liu(刘兆慧)1, Fu-Wen Qin(秦福文)2, and De-Jun Wang(王德君)1,†
1 Key Laboratory of Intelligent Control and Optimization for Industrial Equipment, Ministry of Education;School of Control Science and Engineering, Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian 116024, China;
2 State Key Laboratory of Materials Modification by Laser, Ion, and Electron Beams(Ministry of Education), Dalian University of Technology, Dalian 116024, China
Abstract  We investigate the effect of ozone (O3) oxidation of silicon carbide (SiC) on the flat-band voltage (Vfb) stability of SiC metal-oxide-semiconductor (MOS) capacitors. The SiC MOS capacitors are produced by O3 oxidation, and their Vfb stability under frequency variation, temperature variation, and bias temperature stress are evaluated. Secondary ion mass spectroscopy (SIMS), atomic force microscopy (AFM), and x-ray photoelectron spectroscopy (XPS) indicate that O3 oxidation can adjust the element distribution near SiC/SiO2 interface, improve SiC/SiO2 interface morphology, and inhibit the formation of near-interface defects, respectively. In addition, we elaborate the underlying mechanism through which O3 oxidation improves the Vfb stability of SiC MOS capacitors by using the measurement results and O3 oxidation kinetics.
Keywords:  SiC MOS capacitors      ozone oxidation      bias temperature instability      Deal-Grove model  
Received:  19 May 2022      Revised:  28 June 2022      Accepted manuscript online:  29 June 2022
PACS:  73.61.Ey (III-V semiconductors)  
  73.40.Qv (Metal-insulator-semiconductor structures (including semiconductor-to-insulator))  
  81.65.Mq (Oxidation)  
  85.30.De (Semiconductor-device characterization, design, and modeling)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61874017).
Corresponding Authors:  De-Jun Wang     E-mail:  dwang121@dlut.edu.cn

Cite this article: 

Zhi-Peng Yin(尹志鹏), Sheng-Sheng Wei(尉升升), Jiao Bai(白娇), Wei-Wei Xie(谢威威), Zhao-Hui Liu(刘兆慧), Fu-Wen Qin(秦福文), and De-Jun Wang(王德君) Ozone oxidation of 4H-SiC and flat-band voltage stability of SiC MOS capacitors 2022 Chin. Phys. B 31 117302

[1] She X, Huang A Q, Lucia O and Ozpineci B 2017 IEEE Transactions on Industrial Electronics 64 8193
[2] Liu G, Tuttle B R and Dhar S 2015 Appl. Phys. Rev. 2 021307
[3] Yang C, Wei S and Wang D 2021 J. Phys. D: Appl. Phys. 54 123002
[4] Matocha K 2008 Solid-State Electron. 52 1631
[5] Chung G Y, Tin C C, Williams J R, McDonald K, Ventra M D, Pantelides S T, Feldman L C and Weller R A 2000 Appl. Phys. Lett. 76 1713
[6] Jamet P and Dimitrijev S 2001 Appl. Phys. Lett. 79 323
[7] Aichinger T, Rescher G and Pobegen G 2018 Microelectronics Reliability 80 68
[8] Zhang F, Yang C, Su Y and Wang D 2020 Appl. Surf. Sci. 514 145889
[9] Yang C, Gu Z, Yin Z, Qin F and Wang D 2019 J. Phys. D: Appl. Phys. 52 405103
[10] Zhang Y J, Yin Z P, Su Y and Wang D J 2018 Chin. Phys. B 27 047103
[11] Li W, Li L, Wang F, Zheng L, Xia J, Qin F, Wang X, Li Y, Liu R, Wang D, Pan Y and Yang F 2017 Chin. Phys. B 26 037104
[12] Jia Y, Lv H, Song Q, Tang X, Xiao L, Wang L, Tang G, Zhang Y and Zhang Y 2017 Appl. Surf. Sci. 397 175
[13] Liu P, Hao J L, Wang S K, You N N, Hu Q Y, Zhang Q, Bai Y and Liu X Y 2021 Chin. Phys. B 30 077303
[14] Knaup J M, Deák P, Frauenheim T, Gali A, Hajnal Z and Choyke W J 2005 Phys. Rev. B 71 115323
[15] You N, Liu X, Bai Y, Liu P, Zhang Q, Zhang Y and Wang S 2021 Appl. Surf. Sci. 562 150165
[16] Li W, Zhao J, Zhu Q and Wang D 2013 Phys. Rev. B 87 085320
[17] Indari E D, Yamashita Y, Hasunuma R, Oji H and Yamabe K 2019 AIP Adv. 9 105018
[18] Liu X, Hao J, You N, Bai Y and Wang S 2019 AIP Adv. 9 125150
[19] Liu X Y, Hao J L, You N N, Bai Y, Tang Y D, Yang C Y and Wang S K 2020 Chin. Phys. B 29 037301
[20] Kosugi R, Fukuda K and Arai K 2003 Appl. Phys. Lett. 83 884
[21] Ebihara Y, Chokawa K, Kato S, Kamiya K and Shiraishi K 2012 Appl. Phys. Lett. 100 212110
[22] Shirakawa H, Kamiya K, Araidai M, Watanabe H and Shiraishi K 2016 Appl. Phys. Express 9 064301
[23] Yoshioka H, Nakamura T and Kimoto T 2012 J. Appl. Phys. 112 024520
[24] Kim D K, Jeong K S, Kang Y S, Kang H K, Cho S W, Kim S O, Suh D, Kim S and Cho M H 2016 Sci. Rep. 6 34945
[25] Yin Z, Wei S, Bai J, Xie W, Qin F and Wang D 2021 Ceram. Int. 48 10874
[26] Fink C K, Nakamura K, Ichimura S and Jenkins S J 2009 J. Phys.: Condens. Matter 21 183001
[27] Song Y, Dhar S, Feldman L C, Chung G and Williams J R 2004 J. Appl. Phys. 95 4953
[28] Kodigala S R, Chattopadhyay S, Overton C and Ardoin I 2015 Solid-State Electron. 114 104
[29] Ettisserry D P, Goldsman N and Lelis A J 2017 IEEE Trans. Electron Dev. 64 1007
[30] Peng Z, Wang Y, Shen H, Li C, Wu J, Bai Y, Liu K and Liu X 2016 Microelectronics Reliability 58 192
[31] Peng Z Y, Wang S K, Bai Y, Tang Y D, Chen X M, Li C Z, Liu K A and Liu X Y 2018 J. Appl. Phys. 123 135302
[32] Liu B, Qin F and Wang D 2016 Appl. Surf. Sci. 364 769
[33] Gray P V and Brown D M 1966 Appl. Phys. Lett. 8 31
[34] Zhu Q, Qin F, Li W and Wang D 2014 Physica B 432 89
[35] Sun Y, Chao Y, Yin Z, Qin F and Wang D 2019 J. Appl. Phys. 125 185703
[36] Chanthaphan A, Hosoi T, Nakano Y, Nakamura T, Shimura T and Watanabe H 2013 Appl. Phys. Lett. 102 093510
[37] Zhu Q, Qin F, Li W and Wang D 2013 Appl. Phys. Lett. 103 062105
[38] Shen X and Pantelides S T 2011 Appl. Phys. Lett. 98 053507
[39] Zhu Q, Huang L, Li W, Li S and Wang D 2011 Appl. Phys. Lett. 99 082102
[40] Li W, Zhao J and Wang D 2015 AIP Adv. 5 017122
[41] Li W, Zhao J and Wang D 2015 Solid State Commun. 205 28
[42] Yin Z, Yang C, Zhang F, Su Y, Qin F and Wang D 2020 Appl. Surf. Sci. 531 147312
[43] Kobayashi H, Sakurai T, Takahashi M and Nishioka Y 2003 Phys. Rev. B 67 115305
[44] Yang C, Zhang F, Yin Z, Su Y, Qin F and Wang D 2019 Appl. Surf. Sci. 488 293
[45] Deal B E and Grove A S 1965 J. Appl. Phys. 36 3770
[46] Heihachiro Kikuchi R and Kita K 2014 Appl. Phys. Lett. 104 052106
[47] Goto D, Hijikata Y, Yagi S and Yaguchi H 2015 J. Appl. Phys. 117 095306
[48] Kosugi R, Ichimura S, Kurokawa A, Koike K, Fukuda K, Suzuki S, Okushi H, Yoshida S and Arai K 2000 Appl. Surf. Sci. 159-160 550
[1] Dependence of short channel length on negative/positive bias temperature instability (NBTI/PBTI) for 3D FinFET devices
Ren-Ren Xu(徐忍忍), Qing-Zhu Zhang(张青竹), Long-Da Zhou(周龙达), Hong Yang(杨红), Tian-Yang Gai(盖天洋), Hua-Xiang Yin(殷华湘), and Wen-Wu Wang(王文武). Chin. Phys. B, 2022, 31(1): 017301.
[2] Detailed study of NBTI characterization in 40-nm CMOS process using comprehensive models
Yan Zeng(曾严), Xiao-Jin Li(李小进), Jian Qing(卿健), Ya-Bin Sun(孙亚宾), Yan-Ling Shi(石艳玲), Ao Guo(郭奥), Shao-Jian Hu(胡少坚). Chin. Phys. B, 2017, 26(10): 108503.
[3] Recovery of PMOSFET NBTI under different conditions
Cao Yan-Rong (曹艳荣), Yang Yi (杨毅), Cao Cheng (曹成), He Wen-Long (何文龙), Zheng Xue-Feng (郑雪峰), Ma Xiao-Hua (马晓华), Hao Yue (郝跃). Chin. Phys. B, 2015, 24(9): 097304.
[4] Energy distribution extraction of negative charges responsible for positive bias temperature instability
Ren Shang-Qing (任尚清), Yang Hong (杨红), Wang Wen-Wu (王文武), Tang Bo (唐波), Tang Zhao-Yun (唐兆云), Wang Xiao-Lei (王晓磊), Xu Hao (徐昊), Luo Wei-Chun (罗维春), Zhao Chao (赵超), Yan Jiang (闫江), Chen Da-Peng (陈大鹏), Ye Tian-Chun (叶甜春). Chin. Phys. B, 2015, 24(7): 077304.
[5] Influence of ultra-thin TiN thickness (1.4 nm and 2.4 nm) on positive bias temperature instability (PBTI) of high-k/metal gate nMOSFETs with gate-last process
Qi Lu-Wei (祁路伟), Yang Hong (杨红), Ren Shang-Qing (任尚清), Xu Ye-Feng (徐烨峰), Luo Wei-Chun (罗维春), Xu Hao (徐昊), Wang Yan-Rong (王艳蓉), Tang Bo (唐波), Wang Wen-Wu (王文武), Yan Jiang (闫江), Zhu Hui-Long (朱慧珑), Zhao Chao (赵超), Chen Da-Peng (陈大鹏), Ye Tian-Chun (叶甜春). Chin. Phys. B, 2015, 24(12): 127305.
[6] Analysis of recoverable and permanent components of threshold voltage shift in NBT stressed p-channel power VDMOSFET
Danijel Danković, Ninoslav Stojadinović, Zoran Prijić, Ivica Manić, Vojkan Davidović, Aneta Prijić, Snežana Djorić-Veljković, Snežana Golubović. Chin. Phys. B, 2015, 24(10): 106601.
[7] Flat-roof phenomenon of dynamic equilibrium phase in the negative bias temperature instability effect on a power MOSFET
Zhang Yue (张月), Zhuo Qing-Qing (卓青青), Liu Hong-Xia (刘红侠), Ma Xiao-Hua (马晓华), Hao Yue (郝跃). Chin. Phys. B, 2014, 23(5): 057304.
[8] Effect of gate length on the parameter degradation relations of PMOSFET under NBTI stress
Cao Yan-Rong (曹艳荣), He Wen-Long (何文龙), Cao Cheng (曹成), Yang Yi (杨毅), Zheng Xue-Feng (郑雪峰), Ma Xiao-Hua (马晓华), Hao Yue (郝跃). Chin. Phys. B, 2014, 23(11): 117303.
[9] Effects of stress conditions on the generation of negative bias temperature instability-associated interface traps
Zhang Yue (张月), Pu Shi (蒲石), Lei Xiao-Yi (雷晓艺), Chen Qing (陈庆), Ma Xiao-Hua (马晓华), Hao Yue (郝跃). Chin. Phys. B, 2013, 22(11): 117311.
[10] Study on the drain bias effect on negative bias temperature instability degradation of an ultra-short p-channel metal-oxide-semiconductor field-effect transistor
Cao Yan-Rong(曹艳荣), Ma Xiao-Hua(马晓华), Hao Yue(郝跃), and Hu Shi-Gang(胡世刚). Chin. Phys. B, 2010, 19(4): 047307.
[11] Study on the negative bias temperature instability effect under dynamic stress
Ma Xiao-Hua(马晓华), Cao Yan-Rong(曹艳荣), and Hao Yue(郝跃). Chin. Phys. B, 2010, 19(11): 117308.
[12] Effect of substrate bias on negative bias temperature instability of ultra-deep sub-micro p-channel metal--oxide--semiconductor field-effect transistors
Cao Yan-Rong(曹艳荣), Hao Yue(郝跃), Ma Xiao-Hua(马晓华), and Hu Shi-Gang(胡仕刚). Chin. Phys. B, 2009, 18(1): 309-314.
[13] Actions of negative bias temperature instability (NBTI) and hot carriers in ultra-deep submicron p-channel metal--oxide--semiconductor field-effect transistors (PMOSFETs)
Liu Hong-Xia (刘红侠) and Hao Yue (郝跃). Chin. Phys. B, 2007, 16(7): 2111-2115.
[14] Degradation characteristics and mechanism of PMOSFETs under NBT--PBT--NBT stress
Liu Hong-Xia(刘红侠), Li Zhong-He(李忠贺), and Hao Yue(郝跃). Chin. Phys. B, 2007, 16(5): 1445-1449.
[15] The role of hydrogen in negative bias temperature instability of pMOSFET
Li Zhong-He (李忠贺), Liu Hong-Xia (刘红侠), Hao Yue (郝跃). Chin. Phys. B, 2006, 15(4): 833-838.
No Suggested Reading articles found!