CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Ozone oxidation of 4H-SiC and flat-band voltage stability of SiC MOS capacitors |
Zhi-Peng Yin(尹志鹏)1, Sheng-Sheng Wei(尉升升)1, Jiao Bai(白娇)1, Wei-Wei Xie(谢威威)1, Zhao-Hui Liu(刘兆慧)1, Fu-Wen Qin(秦福文)2, and De-Jun Wang(王德君)1,† |
1 Key Laboratory of Intelligent Control and Optimization for Industrial Equipment, Ministry of Education;School of Control Science and Engineering, Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian 116024, China; 2 State Key Laboratory of Materials Modification by Laser, Ion, and Electron Beams(Ministry of Education), Dalian University of Technology, Dalian 116024, China |
|
|
Abstract We investigate the effect of ozone (O3) oxidation of silicon carbide (SiC) on the flat-band voltage (Vfb) stability of SiC metal-oxide-semiconductor (MOS) capacitors. The SiC MOS capacitors are produced by O3 oxidation, and their Vfb stability under frequency variation, temperature variation, and bias temperature stress are evaluated. Secondary ion mass spectroscopy (SIMS), atomic force microscopy (AFM), and x-ray photoelectron spectroscopy (XPS) indicate that O3 oxidation can adjust the element distribution near SiC/SiO2 interface, improve SiC/SiO2 interface morphology, and inhibit the formation of near-interface defects, respectively. In addition, we elaborate the underlying mechanism through which O3 oxidation improves the Vfb stability of SiC MOS capacitors by using the measurement results and O3 oxidation kinetics.
|
Received: 19 May 2022
Revised: 28 June 2022
Accepted manuscript online: 29 June 2022
|
PACS:
|
73.61.Ey
|
(III-V semiconductors)
|
|
73.40.Qv
|
(Metal-insulator-semiconductor structures (including semiconductor-to-insulator))
|
|
81.65.Mq
|
(Oxidation)
|
|
85.30.De
|
(Semiconductor-device characterization, design, and modeling)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61874017). |
Corresponding Authors:
De-Jun Wang
E-mail: dwang121@dlut.edu.cn
|
Cite this article:
Zhi-Peng Yin(尹志鹏), Sheng-Sheng Wei(尉升升), Jiao Bai(白娇), Wei-Wei Xie(谢威威), Zhao-Hui Liu(刘兆慧), Fu-Wen Qin(秦福文), and De-Jun Wang(王德君) Ozone oxidation of 4H-SiC and flat-band voltage stability of SiC MOS capacitors 2022 Chin. Phys. B 31 117302
|
[1] She X, Huang A Q, Lucia O and Ozpineci B 2017 IEEE Transactions on Industrial Electronics 64 8193 [2] Liu G, Tuttle B R and Dhar S 2015 Appl. Phys. Rev. 2 021307 [3] Yang C, Wei S and Wang D 2021 J. Phys. D: Appl. Phys. 54 123002 [4] Matocha K 2008 Solid-State Electron. 52 1631 [5] Chung G Y, Tin C C, Williams J R, McDonald K, Ventra M D, Pantelides S T, Feldman L C and Weller R A 2000 Appl. Phys. Lett. 76 1713 [6] Jamet P and Dimitrijev S 2001 Appl. Phys. Lett. 79 323 [7] Aichinger T, Rescher G and Pobegen G 2018 Microelectronics Reliability 80 68 [8] Zhang F, Yang C, Su Y and Wang D 2020 Appl. Surf. Sci. 514 145889 [9] Yang C, Gu Z, Yin Z, Qin F and Wang D 2019 J. Phys. D: Appl. Phys. 52 405103 [10] Zhang Y J, Yin Z P, Su Y and Wang D J 2018 Chin. Phys. B 27 047103 [11] Li W, Li L, Wang F, Zheng L, Xia J, Qin F, Wang X, Li Y, Liu R, Wang D, Pan Y and Yang F 2017 Chin. Phys. B 26 037104 [12] Jia Y, Lv H, Song Q, Tang X, Xiao L, Wang L, Tang G, Zhang Y and Zhang Y 2017 Appl. Surf. Sci. 397 175 [13] Liu P, Hao J L, Wang S K, You N N, Hu Q Y, Zhang Q, Bai Y and Liu X Y 2021 Chin. Phys. B 30 077303 [14] Knaup J M, Deák P, Frauenheim T, Gali A, Hajnal Z and Choyke W J 2005 Phys. Rev. B 71 115323 [15] You N, Liu X, Bai Y, Liu P, Zhang Q, Zhang Y and Wang S 2021 Appl. Surf. Sci. 562 150165 [16] Li W, Zhao J, Zhu Q and Wang D 2013 Phys. Rev. B 87 085320 [17] Indari E D, Yamashita Y, Hasunuma R, Oji H and Yamabe K 2019 AIP Adv. 9 105018 [18] Liu X, Hao J, You N, Bai Y and Wang S 2019 AIP Adv. 9 125150 [19] Liu X Y, Hao J L, You N N, Bai Y, Tang Y D, Yang C Y and Wang S K 2020 Chin. Phys. B 29 037301 [20] Kosugi R, Fukuda K and Arai K 2003 Appl. Phys. Lett. 83 884 [21] Ebihara Y, Chokawa K, Kato S, Kamiya K and Shiraishi K 2012 Appl. Phys. Lett. 100 212110 [22] Shirakawa H, Kamiya K, Araidai M, Watanabe H and Shiraishi K 2016 Appl. Phys. Express 9 064301 [23] Yoshioka H, Nakamura T and Kimoto T 2012 J. Appl. Phys. 112 024520 [24] Kim D K, Jeong K S, Kang Y S, Kang H K, Cho S W, Kim S O, Suh D, Kim S and Cho M H 2016 Sci. Rep. 6 34945 [25] Yin Z, Wei S, Bai J, Xie W, Qin F and Wang D 2021 Ceram. Int. 48 10874 [26] Fink C K, Nakamura K, Ichimura S and Jenkins S J 2009 J. Phys.: Condens. Matter 21 183001 [27] Song Y, Dhar S, Feldman L C, Chung G and Williams J R 2004 J. Appl. Phys. 95 4953 [28] Kodigala S R, Chattopadhyay S, Overton C and Ardoin I 2015 Solid-State Electron. 114 104 [29] Ettisserry D P, Goldsman N and Lelis A J 2017 IEEE Trans. Electron Dev. 64 1007 [30] Peng Z, Wang Y, Shen H, Li C, Wu J, Bai Y, Liu K and Liu X 2016 Microelectronics Reliability 58 192 [31] Peng Z Y, Wang S K, Bai Y, Tang Y D, Chen X M, Li C Z, Liu K A and Liu X Y 2018 J. Appl. Phys. 123 135302 [32] Liu B, Qin F and Wang D 2016 Appl. Surf. Sci. 364 769 [33] Gray P V and Brown D M 1966 Appl. Phys. Lett. 8 31 [34] Zhu Q, Qin F, Li W and Wang D 2014 Physica B 432 89 [35] Sun Y, Chao Y, Yin Z, Qin F and Wang D 2019 J. Appl. Phys. 125 185703 [36] Chanthaphan A, Hosoi T, Nakano Y, Nakamura T, Shimura T and Watanabe H 2013 Appl. Phys. Lett. 102 093510 [37] Zhu Q, Qin F, Li W and Wang D 2013 Appl. Phys. Lett. 103 062105 [38] Shen X and Pantelides S T 2011 Appl. Phys. Lett. 98 053507 [39] Zhu Q, Huang L, Li W, Li S and Wang D 2011 Appl. Phys. Lett. 99 082102 [40] Li W, Zhao J and Wang D 2015 AIP Adv. 5 017122 [41] Li W, Zhao J and Wang D 2015 Solid State Commun. 205 28 [42] Yin Z, Yang C, Zhang F, Su Y, Qin F and Wang D 2020 Appl. Surf. Sci. 531 147312 [43] Kobayashi H, Sakurai T, Takahashi M and Nishioka Y 2003 Phys. Rev. B 67 115305 [44] Yang C, Zhang F, Yin Z, Su Y, Qin F and Wang D 2019 Appl. Surf. Sci. 488 293 [45] Deal B E and Grove A S 1965 J. Appl. Phys. 36 3770 [46] Heihachiro Kikuchi R and Kita K 2014 Appl. Phys. Lett. 104 052106 [47] Goto D, Hijikata Y, Yagi S and Yaguchi H 2015 J. Appl. Phys. 117 095306 [48] Kosugi R, Ichimura S, Kurokawa A, Koike K, Fukuda K, Suzuki S, Okushi H, Yoshida S and Arai K 2000 Appl. Surf. Sci. 159-160 550 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|