Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(6): 068202    DOI: 10.1088/1674-1056/ab943c
Special Issue: SPECIAL TOPIC — Advanced calculation & characterization of energy storage materials & devices at multiple scale
SPECIAL TOPIC—Advanced calculation & characterization of energy storage materials & devices at multiple scale Prev   Next  

Understanding the Li diffusion mechanism and positive effect of current collector volume expansion in anode free batteries

Yan Zhuang(庄严)1, Zheyi Zou(邹喆乂)1, Bo Lu(吕浡)3,4, Yajie Li(李亚捷)1, Da Wang(王达)1, Maxim Avdeev5,6, Siqi Shi(施思齐)1,2
1 State Key Laboratory of Advanced Special Steel, Shanghai Key Laboratory of Advanced Ferrometallurgy, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China;
2 Materials Genome Institute, Shanghai University, Shanghai 200444, China;
3 Shanghai Institute of Applied Mathematics and Mechanics, School of Mechanics and Engineering Science, Shanghai University, Shanghai 200444, China;
4 Shanghai Key Laboratory of Mechanics in Energy Engineering, Shanghai University, Shanghai 200444, China;
5 Australian Nuclear Science and Technology Organisation, Locked Bag 2001, Kirrawee DC NSW 2232, Australia;
6 School of Chemistry, The University of Sydney, Sydney 2006, Australia
Abstract  

In anode free batteries (AFBs), the current collector acts as anode simultaneously and has large volume expansion which is generally considered as a negative effect decreasing the structural stability of a battery. Moreover, despite many studies on the fast lithium diffusion in the current collector materials of AFB such as copper and aluminum, the involved Li diffusion mechanism in these materials remains poorly understood. Through first-principles calculation and stress-assisted diffusion equations, here we study the Li diffusion mechanism in several current collectors and related alloys and clarify the effect of volume expansion on Li diffusion respectively. It is suggested that due to the lower Li migration barriers in aluminum and tin, they should be more suitable to be used as AFB anodes, compared to copper, silver, and lead. The Li diffusion facilitation in copper with a certain number of vacancies is proposed to explain why the use of copper with a thickness ≤ 100 nm as the protective coating on the anode improves the lifetime of the batteries. We show that the volume expansion has a positive effect on Li diffusion via mechanical-electrochemical coupling. Namely, the volume expansion caused by Li diffusion will further induce stress which in turn affects the diffusion. These findings not only provide in-depth insight into the operating principle of AFBs, but also open a new route toward design of improved anode through utilizing the positive effect of mechanical-electrochemical coupling.

Keywords:  anode free battery      current collector      Li diffusion mechanism      mechanical-electrochemical coupling      stress-assisted diffusion  
Received:  09 March 2020      Revised:  16 May 2020      Accepted manuscript online: 
PACS:  82.47.Aa (Lithium-ion batteries)  
  66.30.-h (Diffusion in solids)  
  81.40.Jj (Elasticity and anelasticity, stress-strain relations)  
  47.11.St (Multi-scale methods)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 11874254, 51802187, and 51622207), Shanghai Sailing Program, China (Grant No. 18YF1408700), Shanghai Pujiang Program, China (Grant No. 2019PJD016), Open Project of the State Key Laboratory of Advanced Special Steel, Shanghai University, China (Grant No. SKLASS2018-01), the Project of the State Key Laboratory of Advanced Special Steel, Shanghai University, China (Grant No. SKLASS2019-Z023), and the Science and Technology Commission of Shanghai Municipality, China (Grant No. 19DZ2270200).

Corresponding Authors:  Siqi Shi     E-mail:  sqshi@shu.edu.cn

Cite this article: 

Yan Zhuang(庄严), Zheyi Zou(邹喆乂), Bo Lu(吕浡), Yajie Li(李亚捷), Da Wang(王达), Maxim Avdeev, Siqi Shi(施思齐) Understanding the Li diffusion mechanism and positive effect of current collector volume expansion in anode free batteries 2020 Chin. Phys. B 29 068202

[1] Zhang W J 2011 J. Power Sources 196 13
[2] Goodenough J B and Park K S 2013 J. Am. Chem. Soc. 135 1167
[3] Yang C P, Yin Y X, Zhang S F, Li N W and Guo Y G 2015 Nat. Commun. 6 8058
[4] Yue Y and Liang H 2018 Small Methods 2 1800056
[5] Wang M, Tang M, Chen S, Ci H, Wang K, Shi L, Lin L, Ren H, Shan J, Gao P, Liu Z and Peng H 2017 Adv. Mater. 29 1703882
[6] Lu L L, Ge J, Yang J N, Chen S M, Yao H B, Zhou F and Yu S H 2016 Nano Lett. 16 4431
[7] Busson C, Blin M A, Guichard P, Soudan P, Crosnier O, Guyomard D and Lestriez B 2018 J. Power Sources 406 7
[8] Ji B, Zhang F, Sheng M, Tong X and Tang Y 2017 Adv. Mater. 29 1604219
[9] Qian J, Adams B, Zheng J, Xu W, Henderson W, Wang J, Bowden M, Xu S, Hu J and Zhang J G 2016 Adv. Funct. Mater. 26 7094
[10] Zhang F, Ji B, Tong X, Sheng M, Zhang X, Lee C S and Tang Y 2016 Adv. Mater. Interfaces 3 1600605
[11] Zhang X, Tang Y, Zhang F and Lee C S 2016 Adv. Energy Mater. 6 1502588
[12] Genovese M, Louli A, Weber R, Hames S and Dahn J 2018 J. Electrochem. Soc. 165 A3321
[13] Zhang S S, Fan X and Wang C 2017 Electrochim. Acta 258 1201
[14] Goodenough J B and Kim Y 2010 Chem. Mater. 22 587
[15] Shi S, Gao J, Liu Y, Zhao Y, Wu Q, Ju W, Ouyang C and Xiao R 2016 Chin. Phys. B 25 018212
[16] Ouyang C Y, Wang D Y, Shi S Q, Wang Z X, Li H, Huang X J and Chen L Q 2006 Chin. Phys. Lett. 23 61
[17] Xiong Z, Shi S, Ouyang C, Lei M, Hu L, Ji Y, Wang Z and Chen L 2005 Phys. Lett. A 337 247
[18] Cucinotta C S, Miceli G, Raiteri P, Krack M, Kuehne T D, Bernasconi M and Parrinello M 2009 Phys. Rev. Lett. 103 125901
[19] Rupp R, Caerts B, Vantomme A, Fransaer J and Vlad A 2019 J. Phys. Chem. Lett. 10 5206
[20] Prussin S 1961 J. Appl. Phys. 32 1876
[21] Bower A F, Guduru P R and Sethuraman V A 2011 J. Mech. Phys. Solids 59 804
[22] Zhang J, Lu B, Song Y and Ji X 2012 J. Power Sources 209 220
[23] He Y L, Hu H J, Song Y C, Guo Z S, Liu C and Zhang J Q 2014 J. Power Sources 248 517
[24] Song X, Lu Y J, Shi M L, Zhao X and Wang F H 2018 Acta Phys. Sin. 67 140201 (in Chinese)
[25] Deshpande R, Cheng Y T and Verbrugge M W 2010 J. Power Sources 195 5081
[26] Bhandakkar T K and Johnson H T 2012 J. Mech. Phys. Solids 60 1103
[27] Song Y, Shao X, Guo Z and Zhang J 2013 J. Phys. D: Appl. Phys. 46 105307
[28] Ryu I, Choi J W, Cui Y and Nix W D 2011 J. Mech. Phys. Solids 59 1717
[29] Yong L, Kai Z, Zheng B, Zhang X and Qi W 2015 J. Appl. Phys. 117 245103
[30] Jain A, Ong S P, Hautier G, Chen W, Richards W D, Dacek S, Cholia S, Gunter D, Skinner D and Ceder G 2013 APL Mater. 1 011002
[31] Murch G E 2012 Diffusion in crystalline solids (New York: Academic Press) p. 189
[32] Mantina M, Wang Y, Arroyave R, Chen L Q, Liu Z K and Wolverton C 2008 Phys. Rev. Lett. 100 215901
[33] Baettig P and Spaldin N A 2005 Appl. Phys. Lett. 86 012505
[34] Blöchl P E 1994 Phys. Rev. B 50 17953
[35] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[36] Parlinski K, Li Z and Kawazoe Y 1997 Phys. Rev. Lett. 78 4063
[37] Duan Y and Sorescu D C 2009 Phys. Rev. B 79 014301
[38] Henkelman G, Uberuaga B P and Jónsson H 2000 J. Chem. Phys. 113 9901
[39] Mehrer H 1984 Diffusion in solids: fundamentals, methods, materials, diffusion-controlled processes (Berlin: Springer Science & Business Media) p. 297
[40] Eshghinejad A and Li J 2015 Mech. Mater. 91 343
[41] Guo Z, Liu C, Lu B and Feng J 2019 Carbon 150 32
[42] Guo Z, Zhang T, Hu H, Song Y and Zhang J 2014 J. Appl. Mech. 81 031013
[43] Haynes W 2012 CRC handbook of chemistry and physics (93rd edn.) (Boca Raton: CRC Press) p. 1790
[44] Xu L Y and Cheng Y F 2013 Corros. Sci. 73 150
[45] Hamon Y, Brousse T, Jousse F, Topart P, Buvat P and Schleich D M 2001 J. Power Sources 97-98 185
[46] Idota Y, Kubota T, Matsufuji A, Maekawa Y and Miyasaka T 1997 Science 276 1395
[47] Winter M and Besenhard J O 1999 Electrochim. Acta 45 31
[48] Vlad A, Reddy A L M, Ajayan A, Singh N, Gohy J F, Melinte S and Ajayan P M 2012 Proc. Natl Acad. Sci. USA 109 15168
[49] Li Q, Pan H, Li W, Wang Y, Wang J, Zheng J, Yu X, Li H and Chen L 2018 ACS Energy Lett. 3 2259
[50] Liu Y, Sun M, Yuan Y, Wu Q, Wang H, He Y, Lin Z, Zhou F, Ling M, Qian C, Liang C and Lu J 2020 Adv. Funct. Mater. 30 1910249
[51] Sheng M H, Zhang F, Ji B F, Tong X F and Tang Y B 2017 Adv. Energy Mater. 7 1601963
[52] Gaillac R, Pullumbi P and Coudert F X 2016 J. Phys. Condens. Matter 28 275201
[1] A superhigh discharge capacity induced by a synergetic effect between high-surface-area carbons and a carbon paper current collector in a lithium–oxygen battery
Luo Guang-Sheng (罗广生), Huang Shi-Ting (黄诗婷), Zhao Ning (赵宁), Cui Zhong-Hui (崔忠慧), Guo Xiang-Xin (郭向欣). Chin. Phys. B, 2015, 24(8): 088102.
[2] Significant effect of electron transfer between current collector and active material on high rate performance of Li4Ti5O12
Pan Hui-Lin (潘慧霖), Hu Yong-Sheng (胡勇胜), Li Hong (李泓), Chen Li-Quan (陈立泉). Chin. Phys. B, 2011, 20(11): 118202.
No Suggested Reading articles found!