Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(5): 057803    DOI: 10.1088/1674-1056/25/5/057803
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Broadband tunability of surface plasmon resonance in graphene-coating silica nanoparticles

Zhe Shi(史哲)1, Yang Yang(杨阳)1,2, Lin Gan(甘霖)1, Zhi-Yuan Li(李志远)1
1. Laboratory of Optical Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
2. Key Laboratory of Micro-nano Measurement-Manipulation and Physics (Ministry of Education), Department of Physics, Beihang University, Beijing 100191, China
Abstract  

Graphene decorated nanomaterials and nanostructures can potentially be used in military and medical science applications. In this article, we study the optical properties of a graphene wrapping silica core-shell spherical nanoparticle under illumination of external light by using the Mie theory. We find that the nanoparticle can exhibit surface plasmon resonance (SPR) that can be broadly tuned from mid infrared to near infrared via simply changing the geometric parameters. A simplified equivalent dielectric permittivity model is developed to better understand the physics of SPR, and the calculation results agree well qualitatively with the rigorous Mie theory. Both calculations suggest that a small radius of graphene wrapping nanoparticle with high Fermi level could move the SPR wavelength of graphene into the near infrared regime.

Keywords:  graphene      core-shell nanoparticle      surface plasmon resonance  
Received:  22 January 2016      Accepted manuscript online: 
PACS:  78.67.Wj (Optical properties of graphene)  
  78.67.Bf (Nanocrystals, nanoparticles, and nanoclusters)  
  73.20.Mf (Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 11204365 and 11434017) and the National Basic Research Program of China (Grant No. 2013CB632704).

Corresponding Authors:  Zhi-Yuan Li     E-mail:  lizy@aphy.iphy.ac.cn

Cite this article: 

Zhe Shi(史哲), Yang Yang(杨阳), Lin Gan(甘霖), Zhi-Yuan Li(李志远) Broadband tunability of surface plasmon resonance in graphene-coating silica nanoparticles 2016 Chin. Phys. B 25 057803

[1] Geim A K and Novoselov K S 2007 Nat. Mater. 6 183
[2] Neto A H C, Guinea F, Peres N M R, Novoselov K S and Geim A K 2009 Rev. Mod. Phys. 81 109
[3] Liu H, Liu Y and Zhu D 2011 J. Mater. Chem. 21 3335
[4] Lin Y M, Dimitrakopoulos C, Jenkins K A, Farmer D B, Chiu H Y, Grill A and Avouris P 2010 Science 327 662
[5] Liao L, Lin Y C, Bao M Q, Cheng R, Bai J W, Liu Y, Qu Y Q, Wang K L, Huang Y and Duan X F 2010 Nature 467 305
[6] Bonaccorso F, Sun Z, Hasan T and Ferrari A C 2010 Nat. Photon. 4 611
[7] Liu M, Yin X B, Ulin-Avila E, Geng B S, Zentgraf T, Ju L, Feng W and Zhang X 2011 Nature 474 64
[8] Phare C T, Lee Y H D, Cardenas J and Lipson M 2015 Nat. Photon. 9 511
[9] Li W, Chen B G, Meng C, Fang W, Xiao Y, Li X Y, Hu Z F, Xu Y X, Tong L M, Wang H Q, Liu W T, Bao J M and Shen Y R 2014 Nano Lett. 14 955
[10] Wang X, Zhi L and Müllen K 2008 Nano Lett. 8 323
[11] Nair R R, Blake P, Grigorenko A N, Novoselov K S, Booth T J, Stauber T, Peres N M R and Geim A K 2008 Science 320 1308
[12] Yao Y, Kats M A, Genevet P, Yu N F, Song Y, Kong J and Capasso F 2013 Nano Lett. 13 1257
[13] Emani N K, Chung T F, Ni X J, Kildishev A V, Chen Y P and Boltasseva A 2012 Nano Lett. 12 5202
[14] Fang Z Y, Liu Z, Wang Y, Ajayan P M, Nordlander P and Halas N J 2012 Nano Lett. 12 3808
[15] Gu T, Petrone N, McMillan J F, Zande A V D, Tu M, Lo G Q, Kwong D L, Hone J and Wong C W 2012 Nat. Photon. 6 554
[16] Majumdar A, Kim J, Vuckovic J and Wang F 2013 Nano Lett. 13 515
[17] Shi Z, Gan L, Xiao T H, Guo H L and Li Z Y 2015 ACS Photonics 2 1513
[18] Ju L, Geng B S, Horng J, Girit C, Martin M, Hao Z, Bechtel H A, Liang X G, Zettl A, Shen Y R and Wang F 2011 Nat. Nano. 6 630
[19] Gao W, Shu J, Qiu C and Xu Q 2012 ACS Nano 6 7806
[20] Yang H, Hou Z, Zhou N, He B, Cao J and Kuang Y 2014 Ceram. Int. 40 13903
[21] Zhu K X, Guo L W, Lin J J, Hao W C, Shang J, Jia Y P, Chen L L, Jin S F, Wang W J and Chen X L 2012 Appl. Phys. Lett. 100 023113
[22] Lu W, Wang D, Guo L W, Jia Y P, Ye M P, Huang J, Li Z L, Peng Y, Yuan W X and Chen X L 2015 Adv. Mater. 27 7986
[23] Bohren C F and Huffman D R 2008 Absorption and Scattering of Light by Small Particles (John Wiley & Sons) pp. 82-100
[24] Palik E D 1998 Handbook of Optical Constants of Solids (Book 3) (Academic Press)
[25] Falkovsky L A and Pershoguba S S 2007 Phys. Rev. B 76 153410
[26] Christensen T, Jauho A P, Wubs M and Mortensen N A 2015 Phys. Rev. B 91 125414
[27] Yang B, Wu T, Yang Y and Zhang X 2015 J. Opt. 17 035002
[28] Jackson J D 1998 Classical Electrodynamics (3rd edn.) (New York: Wiley) pp. 157-159
[29] Panchakarla L S, Subrahmanyam K S, Saha S K, Govindaraj A, Krishnamurthy H R, Waghmare U V and Rao C N R 2009 Adv. Mater. 21 4726
[30] Li J F and Li Z Y 2014 Chin. Phys. B 23 047305
[31] Zhou F, Li Z Y, Liu Y and Xia Y N 2008 J. Phys. Chem. C 112 20233
[32] Hu M, Petrova H, Sekkinen A R, Chen J Y, McLellan J M, Li Z Y, Marquez M, Li X D, Xia Y N and Hartland G V 2006 J. Phys. Chem. B 110 19923
[1] Polarization Raman spectra of graphene nanoribbons
Wangwei Xu(许望伟), Shijie Sun(孙诗杰), Muzi Yang(杨慕紫), Zhenliang Hao(郝振亮), Lei Gao(高蕾), Jianchen Lu(卢建臣), Jiasen Zhu(朱嘉森), Jian Chen(陈建), and Jinming Cai(蔡金明). Chin. Phys. B, 2023, 32(4): 046803.
[2] Spin- and valley-polarized Goos-Hänchen-like shift in ferromagnetic mass graphene junction with circularly polarized light
Mei-Rong Liu(刘美荣), Zheng-Fang Liu(刘正方), Ruo-Long Zhang(张若龙), Xian-Bo Xiao(肖贤波), and Qing-Ping Wu(伍清萍). Chin. Phys. B, 2023, 32(3): 037301.
[3] Fiber cladding dual channel surface plasmon resonance sensor based on S-type fiber
Yong Wei(魏勇), Xiaoling Zhao(赵晓玲), Chunlan Liu(刘春兰), Rui Wang(王锐), Tianci Jiang(蒋天赐), Lingling Li(李玲玲), Chen Shi(石晨), Chunbiao Liu(刘纯彪), and Dong Zhu(竺栋). Chin. Phys. B, 2023, 32(3): 030702.
[4] Numerical simulation of a truncated cladding negative curvature fiber sensor based on the surface plasmon resonance effect
Zhichao Zhang(张志超), Jinhui Yuan(苑金辉), Shi Qiu(邱石), Guiyao Zhou(周桂耀), Xian Zhou(周娴), Binbin Yan(颜玢玢), Qiang Wu(吴强), Kuiru Wang(王葵如), and Xinzhu Sang(桑新柱). Chin. Phys. B, 2023, 32(3): 034208.
[5] Graphene metasurface-based switchable terahertz half-/quarter-wave plate with a broad bandwidth
Xiaoqing Luo(罗小青), Juan Luo(罗娟), Fangrong Hu(胡放荣), and Guangyuan Li(李光元). Chin. Phys. B, 2023, 32(2): 027801.
[6] Dual-channel fiber-optic surface plasmon resonance sensor with cascaded coaxial dual-waveguide D-type structure and microsphere structure
Ling-Ling Li(李玲玲), Yong Wei(魏勇), Chun-Lan Liu(刘春兰), Zhuo Ren(任卓), Ai Zhou(周爱), Zhi-Hai Liu(刘志海), and Yu Zhang(张羽). Chin. Phys. B, 2023, 32(2): 020702.
[7] Correlated states in alternating twisted bilayer-monolayer-monolayer graphene heterostructure
Ruirui Niu(牛锐锐), Xiangyan Han(韩香岩), Zhuangzhuang Qu(曲壮壮), Zhiyu Wang(王知雨), Zhuoxian Li(李卓贤), Qianling Liu(刘倩伶), Chunrui Han(韩春蕊), and Jianming Lu(路建明). Chin. Phys. B, 2023, 32(1): 017202.
[8] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[9] Dynamically tunable multiband plasmon-induced transparency effect based on graphene nanoribbon waveguide coupled with rectangle cavities system
Zi-Hao Zhu(朱子豪), Bo-Yun Wang(王波云), Xiang Yan(闫香), Yang Liu(刘洋), Qing-Dong Zeng(曾庆栋), Tao Wang(王涛), and Hua-Qing Yu(余华清). Chin. Phys. B, 2022, 31(8): 084210.
[10] Dual-channel tunable near-infrared absorption enhancement with graphene induced by coupled modes of topological interface states
Zeng-Ping Su(苏增平), Tong-Tong Wei(魏彤彤), and Yue-Ke Wang(王跃科). Chin. Phys. B, 2022, 31(8): 087804.
[11] Recent advances of defect-induced spin and valley polarized states in graphene
Yu Zhang(张钰), Liangguang Jia(贾亮广), Yaoyao Chen(陈瑶瑶), Lin He(何林), and Yeliang Wang(王业亮). Chin. Phys. B, 2022, 31(8): 087301.
[12] Precisely controlling the twist angle of epitaxial MoS2/graphene heterostructure by AFM tip manipulation
Jiahao Yuan(袁嘉浩), Mengzhou Liao(廖梦舟), Zhiheng Huang(黄智恒), Jinpeng Tian(田金朋), Yanbang Chu(褚衍邦), Luojun Du(杜罗军), Wei Yang(杨威), Dongxia Shi(时东霞), Rong Yang(杨蓉), and Guangyu Zhang(张广宇). Chin. Phys. B, 2022, 31(8): 087302.
[13] Longitudinal conductivity in ABC-stacked trilayer graphene under irradiating of linearly polarized light
Guo-Bao Zhu(朱国宝), Hui-Min Yang(杨慧敏), and Jie Yang(杨杰). Chin. Phys. B, 2022, 31(8): 088102.
[14] Valley-dependent transport in strain engineering graphene heterojunctions
Fei Wan(万飞), X R Wang(王新茹), L H Liao(廖烈鸿), J Y Zhang(张嘉颜),M N Chen(陈梦南), G H Zhou(周光辉), Z B Siu(萧卓彬), Mansoor B. A. Jalil, and Yuan Li(李源). Chin. Phys. B, 2022, 31(7): 077302.
[15] Numerical study of a highly sensitive surface plasmon resonance sensor based on circular-lattice holey fiber
Jian-Fei Liao(廖健飞), Dao-Ming Lu(卢道明), Li-Jun Chen(陈丽军), and Tian-Ye Huang(黄田野). Chin. Phys. B, 2022, 31(6): 060701.
No Suggested Reading articles found!