Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(5): 057802    DOI: 10.1088/1674-1056/25/5/057802
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Origin of strain-induced resonances in flexible terahertz metamaterials

Xiu-Yun Sun(孙秀云)1, Li-Ren Zheng(郑立人)2, Xiao-Ning Li(李枭宁)1, Hua Xu(徐华)1, Xian-Ting Liang(梁先庭)1, Xian-Peng Zhang(张贤鹏)2, Yue-Hui Lu(鲁越晖)2, Young-Pak Lee3, Joo-Yull Rhee4, Wei-Jie Song(宋伟杰)2
1. Department of Physics and Institute of Optics, Ningbo University, Ningbo 315211, China;
2. Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China;
3. Department of Physics and RINS, Hanyang University, Seoul 133-791, Korea;
4. Department of Physics, Sungkyunkwan University, Suwon 440-746, Korea
Abstract  Two types of flexible terahertz metamaterials were fabricated on polyethylene naphthalate (PEN) substrates. The unit cell of one type consists of two identical split-ring resonators (SRRs) that are arranged face-to-face (i.e., FlexMetaF); the unit cell of the other type has nothing different but is arranged back-to-back (i.e., FlexMetaB). FlexMetaF and FlexMetaB illustrate the similar transmission dips under zero strain because the excitation of fundamental inductive-capacitive (LC) resonance is mainly dependent on the geometric structure of individual SRR. However, if a gradually variant strain is applied to bend FlexMetaF and FlexMetaB, the new resonant peaks appear: in the case of FlexMetaF, the peaks are located at the lower frequencies; in the case of FlexMetaB, the peaks appear at the frequencies adjacent to the LC resonance. The origin and evolution of strain-induced resonances are studied. The origin is ascribed to the detuning effect and the different responses to strain from FlexMetaF and FlexMetaB are associated with the coupling effect. These findings may improve the understanding on flexible terahertz metamaterials and benefit their applications in flexible or curved devices.
Keywords:  flexible terahertz metamaterials      split ring resonator      strain      resonance  
Received:  18 December 2015      Revised:  16 January 2016      Accepted manuscript online: 
PACS:  78.67.Pt (Multilayers; superlattices; photonic structures; metamaterials)  
  42.60.Da (Resonators, cavities, amplifiers, arrays, and rings)  
  42.25.Bs (Wave propagation, transmission and absorption)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11204146 and 61574144), the Ningbo Key Laboratory of Silicon and Organic Thin Film Optoelectronic Technologies, China, the Program for Ningbo Municipal Science and Technology Innovative Research Team, China (Grant No. 2015B11002), and the K. C. Wong Magna Foundation in Ningbo University, China.
Corresponding Authors:  Hua Xu, Yue-Hui Lu     E-mail:  xuhua@nbu.edu.cn;yhlu@nimte.ac.cn

Cite this article: 

Xiu-Yun Sun(孙秀云), Li-Ren Zheng(郑立人), Xiao-Ning Li(李枭宁), Hua Xu(徐华), Xian-Ting Liang(梁先庭), Xian-Peng Zhang(张贤鹏), Yue-Hui Lu(鲁越晖), Young-Pak Lee, Joo-Yull Rhee, Wei-Jie Song(宋伟杰) Origin of strain-induced resonances in flexible terahertz metamaterials 2016 Chin. Phys. B 25 057802

[1] Shelby R A, Smith D R and Schultz S 2001 Science 292 77
[2] Pendry J B 2000 Phys. Rev. Lett. 85 3966
[3] Schurig D, Mock J J, Justice B J, Cummer S A, Pendry J B, Starr A F and Smith D R 2006 Science 314 977
[4] Moser H O, Casse B D F, Wilhelmi O and Saw B T 2005 Phys. Rev. Lett. 94 063901
[5] Chen H T, Padilla W J, Zide J M O, Gossard A C, Taylor A J and Averitt R D 2006 Nature 444 597
[6] Singh R, Cao W, Al-Naib I, Cong L, Withayachumnankul W and Zhang W 2014 Appl. Phys. Lett. 105 171101
[7] Gu C, Qu S B, Pei Z B, Xu Z, Liu J and Gu W 2011 Chin. Phys. B 20 017801
[8] Chen H T, Padilla W J, Cich M J, Azad A K, Averitt R D and Taylor A J 2009 Nat. Photonics 3 148
[9] Manjappa M, Chiam S Y, Cong L, Bettiol A A, Zhang W and Singh R 2015 Appl. Phys. Lett. 106 181101
[10] Xu X, Peng B, Li D, Zhang J, Wong L M, Zhang Q, Wang S and Xiong Q 2011 Nano Lett. 11 3232
[11] Yen T J, Padilla W J, Fang N, Vier D C, Smith D R, Pendry J B, Basov D N and Zhang X 2004 Science 303 1494
[12] Fan J, Sun G Y and Zhu W R 2011 Chin. Phys. B 20 114101
[13] Zhang F, Liu Z, Qiu K, Zhang W, Wu C and Feng S 2015 Appl. Phys. Lett. 106 061906
[14] Pendry J B, Holden A J, Robbins D J and Stewart W J 1999 IEEE Trans. Microw. Theory Tech. 47 2075
[15] Driscoll T, Andreev G O, Basov D N, Palit S, Cho S Y, Jokerst N M and Smith D R 2007 Appl. Phys. Lett. 91 062511
[16] Chen C Y, Un I W, Tai N H and Yen T J 2009 Opt. Express 17 15372
[17] Singh R, Al-Naib I A I, Koch M and Zhang W 2011 Opt. Express 19 6312
[18] Li J, Shah C M, Withayachumnankul W, Ung B S Y, Mitchell A, Sriram S, Bhaskaran M, Chang S and Abbott D 2013 Appl. Phys. Lett. 102 121101
[19] Li J, Shah C M, Withayachumnankul W, Ung B S Y, Mitchell A, Sriram S, Bhaskaran M, Chang S and Abbott D 2013 Opt. Lett. 38 2104
[20] Zheng L, Sun X, Xu H, Lu Y, Lee Y P, Rhee J Y and Song W 2015 Plasmonics 10 1331
[21] Alves F, Karamitros A, Grbovic D and Karunasiri G 2011 SPIE Photonic Devices+ Applications. International Society for Optics and Photonics 8119 8119K-1
[22] Walia S, Shah C M, Gutruf P, Nili H, Chowdhury D R, Withayachumnankul W, Bhaskaran M and Sriram S 2015 Appl. Phys. Rev. 2 011303
[23] Gu J, Singh R, Liu X, et al. 2012 Nat. Commun. 3 1151
[24] Jin X R, Park J, Zheng H, Lee S, Lee Y P, Rhee J Y, Kim K W, Cheong H S and Jang W H 2011 Opt. Express 19 21652
[25] Evlyukhin A B, Bozhevolnyi S I, Pors A, Nielsen M G, Radko I P, Willatzen M and Albrektsen O 2010 Nano Lett. 10 4571
[26] Tamayama Y, Yasui K, Nakanishi T and Kitano M 2014 Phys. Rev. B 89 075120
[27] Garrido Alzar C L, Martinez M A G and Nussenzveig P 2002 Am. J. Phys. 70 37
[1] Resonant perfect absorption of molybdenum disulfide beyond the bandgap
Hao Yu(于昊), Ying Xie(谢颖), Jiahui Wei(魏佳辉), Peiqing Zhang(张培晴),Zhiying Cui(崔志英), and Haohai Yu(于浩海). Chin. Phys. B, 2023, 32(4): 048101.
[2] Precision measurement and suppression of low-frequency noise in a current source with double-resonance alignment magnetometers
Jintao Zheng(郑锦韬), Yang Zhang(张洋), Zaiyang Yu(鱼在洋), Zhiqiang Xiong(熊志强), Hui Luo(罗晖), and Zhiguo Wang(汪之国). Chin. Phys. B, 2023, 32(4): 040601.
[3] Strain compensated type II superlattices grown by molecular beam epitaxy
Chao Ning(宁超), Tian Yu(于天), Rui-Xuan Sun(孙瑞轩), Shu-Man Liu(刘舒曼), Xiao-Ling Ye(叶小玲), Ning Zhuo(卓宁), Li-Jun Wang(王利军), Jun-Qi Liu(刘俊岐), Jin-Chuan Zhang(张锦川), Shen-Qiang Zhai(翟慎强), and Feng-Qi Liu(刘峰奇). Chin. Phys. B, 2023, 32(4): 046802.
[4] Inverse stochastic resonance in modular neural network with synaptic plasticity
Yong-Tao Yu(于永涛) and Xiao-Li Yang(杨晓丽). Chin. Phys. B, 2023, 32(3): 030201.
[5] Fiber cladding dual channel surface plasmon resonance sensor based on S-type fiber
Yong Wei(魏勇), Xiaoling Zhao(赵晓玲), Chunlan Liu(刘春兰), Rui Wang(王锐), Tianci Jiang(蒋天赐), Lingling Li(李玲玲), Chen Shi(石晨), Chunbiao Liu(刘纯彪), and Dong Zhu(竺栋). Chin. Phys. B, 2023, 32(3): 030702.
[6] Strain engineering and hydrogen effect for two-dimensional ferroelectricity in monolayer group-IV monochalcogenides MX (M =Sn, Ge; X=Se, Te, S)
Maurice Franck Kenmogne Ndjoko, Bi-Dan Guo(郭必诞), Yin-Hui Peng(彭银辉), and Yu-Jun Zhao(赵宇军). Chin. Phys. B, 2023, 32(3): 036802.
[7] Electrical manipulation of a hole ‘spin’-orbit qubit in nanowire quantum dot: The nontrivial magnetic field effects
Rui Li(李睿) and Hang Zhang(张航). Chin. Phys. B, 2023, 32(3): 030308.
[8] Application of the body of revolution finite-element method in a re-entrant cavity for fast and accurate dielectric parameter measurements
Tianqi Feng(冯天琦), Chengyong Yu(余承勇), En Li(李恩), and Yu Shi(石玉). Chin. Phys. B, 2023, 32(3): 030101.
[9] Numerical simulation of a truncated cladding negative curvature fiber sensor based on the surface plasmon resonance effect
Zhichao Zhang(张志超), Jinhui Yuan(苑金辉), Shi Qiu(邱石), Guiyao Zhou(周桂耀), Xian Zhou(周娴), Binbin Yan(颜玢玢), Qiang Wu(吴强), Kuiru Wang(王葵如), and Xinzhu Sang(桑新柱). Chin. Phys. B, 2023, 32(3): 034208.
[10] Realizing reliable XOR logic operation via logical chaotic resonance in a triple-well potential system
Huamei Yang(杨华美) and Yuangen Yao(姚元根). Chin. Phys. B, 2023, 32(2): 020501.
[11] Bismuth doping enhanced tunability of strain-controlled magnetic anisotropy in epitaxial Y3Fe5O12(111) films
Yunpeng Jia(贾云鹏), Zhengguo Liang(梁正国), Haolin Pan(潘昊霖), Qing Wang(王庆), Qiming Lv(吕崎鸣), Yifei Yan(严轶非), Feng Jin(金锋), Dazhi Hou(侯达之), Lingfei Wang(王凌飞), and Wenbin Wu(吴文彬). Chin. Phys. B, 2023, 32(2): 027501.
[12] Dual-channel fiber-optic surface plasmon resonance sensor with cascaded coaxial dual-waveguide D-type structure and microsphere structure
Ling-Ling Li(李玲玲), Yong Wei(魏勇), Chun-Lan Liu(刘春兰), Zhuo Ren(任卓), Ai Zhou(周爱), Zhi-Hai Liu(刘志海), and Yu Zhang(张羽). Chin. Phys. B, 2023, 32(2): 020702.
[13] Wavelength- and ellipticity-dependent photoelectron spectra from multiphoton ionization of atoms
Keyu Guo(郭珂雨), Min Li(黎敏), Jintai Liang(梁锦台), Chuanpeng Cao(曹传鹏), Yueming Zhou(周月明), and Peixiang Lu((陆培祥). Chin. Phys. B, 2023, 32(2): 023201.
[14] Optical pulling force on nanoparticle clusters with gain due to Fano-like resonance
Jiangnan Ma(马江南), Feng Lv(冯侣), Guofu Wang(王国富), Zhifang Lin(林志方), Hongxia Zheng(郑红霞), and Huajin Chen(陈华金). Chin. Phys. B, 2023, 32(1): 014205.
[15] Inhibitory effect induced by fractional Gaussian noise in neuronal system
Zhi-Kun Li(李智坤) and Dong-Xi Li(李东喜). Chin. Phys. B, 2023, 32(1): 010203.
No Suggested Reading articles found!