Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(5): 056502    DOI: 10.1088/1674-1056/25/5/056502

Thermodynamic behaviour of Rashba quantum dot in the presence of magnetic field

Sukirti Gumber1, Manoj Kumar1, Pradip Kumar Jha2, Man Mohan1
1. Department of Physics & Astrophysics, University of Delhi, Delhi 110007, India;
2. Department of Physics, DDU College, University of Delhi, Delhi 110015, India
Abstract  The thermodynamic properties of an InSb quantum dot have been investigated in the presence of Rashba spin-orbit interaction and a static magnetic field. The energy spectrum and wave-functions for the system are obtained by solving the Schrodinger wave-equation analytically. These energy levels are employed to calculate the specific heat, entropy, magnetization and susceptibility of the quantum dot system using canonical formalism. It is observed that the system is susceptible to maximum heat absorption at a particular value of magnetic field which depends on the Rashba coupling parameter as well as the temperature. The variation of specific heat shows a Schottky-like anomaly in the low temperature limit and rapidly converges to the value of 2kB with the further increase in temperature. The entropy of the quantum dot is found to be inversely proportional to the magnetic field but has a direct variation with temperature. The substantial effect of Rashba spin-orbit interaction on the magnetic properties of quantum dot is observed at low values of magnetic field and temperature.
Keywords:  quantum dot      Rashba spin-orbit interaction      thermal and magnetic properties  
Received:  02 December 2015      Revised:  01 February 2016      Accepted manuscript online: 
PACS:  65.80.-g (Thermal properties of small particles, nanocrystals, nanotubes, and other related systems)  
  75.75.-c (Magnetic properties of nanostructures)  
Fund: Project support by the University Grants Commission, India, the Department of Science and Technology, and the University Grants Commission-Basic Science Research (UGC-BSR).
Corresponding Authors:  Sukirti Gumber     E-mail:

Cite this article: 

Sukirti Gumber, Manoj Kumar, Pradip Kumar Jha, Man Mohan Thermodynamic behaviour of Rashba quantum dot in the presence of magnetic field 2016 Chin. Phys. B 25 056502

[1] Garcia J M, Medeiros-Ribeiro G, Schmidt K, Ngo T, Feng J L, Lorke A, Kotthaus J and Petroff P M 1997 Appl. Phys. Lett. 71 2014
[2] Sundaram M, Chalmers S A, Hopkins P F and Gossard A C 1991 Science 254 1326
[3] Wang L, Yang D, Hao Z B and Luo Y 2015 Chin. Phys. B 24 067303
[4] Milliron D J, Hughes S M, Cui Y, Manna L, Li J B, Wang L W and Alivisatos A P 2004 Nature 430 190
[5] Gates B D, Xu Q, Stewart M, Ryan D, Willson C G and Whitesides G M 2005 Chem. Rev. 105 1171
[6] Qin Z H 2013 Chin. Phys. B 22 098108
[7] Ito T and Okazaki S 2000 Nature 406 1027
[8] Xia Y N, Rogers J A, Paul K E and Whitesides G M 1999 Chem. Rev. 99 1823
[9] Barth J V, Costantini G and Kern K 2005 Nature 437 671
[10] Drexler H, Leonard D, Hansen W, Kotthaus J P and Petroff P M 1994 Phys. Rev. Lett. 73 2252
[11] Nilsson H A, Karlstrom O, Larsson M, Caroff P, Pedersen J N, Samuelson L, Wacker A, Wernersson L E and Xu H Q 2010 Phys. Rev. Lett. 104 186804
[12] Brunhes T, Boucaud P and Sauvage S 2000 Phys. Rev. B 61 5562
[13] Motyka M, Kudrawiec R, Misiewicz J, Hümmer M, Röbner K, Lehnhardt T, Müller M and Forchel A 2008 J. Appl. Phys. 103 113514
[14] Huynh W U, Dittmer J J and Alivisatos A P 2002 Science 295 2425
[15] Kazes M, Lewis D Y, Ebenstein Y, Mokari T and Banin U 2002 Adv. Mater. 14 317
[16] Badawi A 2015 Chin. Phys. B 24 047205
[17] Gudiksen M S, Lauhon L J, Wang J, Smith D C and Lieber C M 2002 Nature 415 617
[18] Thelander C, Mårtensson T, Björk M T, Ohlsson B J, Larsson M W, Wallenberg L R and Samuelson L 2003 Appl. Phys. Lett. 83 2052
[19] Bratschitsch R and Leitenstorfer A 2006 Nat. Mater. 5 855
[20] Voskoboynikov O, Lee C P and Tretyak O 2001 Phys. Rev. B 63 165306
[21] Governale M 2002 Phys. Rev. Lett. 89 206802
[22] Bulaev D V and Loss D 2005 Phys. Rev. B 71 205324
[23] Rashba E I 1960 Fiz. Tverd. Tela (Leningrad) 2 1224
[24] Rashba E I 1960 Sov. Phys. Solid State 2 1109
[25] Moroz A V and Barnes C H W 2000 Phys. Rev. B 61 R2464
[26] Destefani C F, Ulloa S E and Marques G E 2004 Phys. Rev. B 69 125302
[27] Bagga A, Pietiläinen P and Chakraborty T 2006 Phys. Rev B 74 033313
[28] Bai X F, Sun L L and Chi F 2015 Chin. Phys. B 24 057302
[29] Jha P K, Kumar M, Lahon S, Gumber S and Mohan M 2013 Superlatt. Microstruct. 57 11
[30] Gornik E, Lassnig R, Strasser G, Störmer H L, Gossard A C and Wiegmann W 1985 Phys. Rev. Lett. 54 1820
[31] De Groote J J S, Hornos J and Chaplik A 1994 Phys. Rev. B 46 15397
[32] Neeleshwar S, Chen C L, Tsai C B and Chen Y Y 2005 Phys. Rev. B 71 201307
[33] Diaz-Sanchez L E, Romero A H, Cardona M, Kremer R K and Gonze X 2007 Phys. Rev. Lett. 99 165504
[34] Liao Y Y 2014 Phys. Rev. A 89 022510
[35] Climente J I, Planelles J and Movilla J L 2004 Phys. Rev. B 70 081301
[36] Boyacioglu B and Chatterjee A 2012 J. Appl. Phys. 112 083514
[37] Voskoboynikov O, Bauga O, Lee C P and Tretyak O 2003 J. Appl. Phys. 94 5891
[38] Darwin C G 1931 Proc. Cambridge Philos. Soc. 27 86
[39] De Andrada e Silva E A, La Rocca G C and Bassani F 1997 Phys. Rev. B 55 16293
[40] Datta S and Das B 1990 Appl. Phys. Lett. 56 665
[41] Kane B E 1998 Nature 393 133
[42] Stano P and Fabian J 2005 Phys. Rev. B 72 155410
[1] Adaptive genetic algorithm-based design of gamma-graphyne nanoribbon incorporating diamond-shaped segment with high thermoelectric conversion efficiency
Jingyuan Lu(陆静远), Chunfeng Cui(崔春凤), Tao Ouyang(欧阳滔), Jin Li(李金), Chaoyu He(何朝宇), Chao Tang(唐超), and Jianxin Zhong(钟建新). Chin. Phys. B, 2023, 32(4): 048401.
[2] Electron beam pumping improves the conversion efficiency of low-frequency photons radiated by perovskite quantum dots
Peng Du(杜鹏), Yining Mu(母一宁), Hang Ren(任航), Idelfonso Tafur Monroy, Yan-Zheng Li(李彦正), Hai-Bo Fan(樊海波), Shuai Wang(王帅), Makram Ibrahim, and Dong Liang(梁栋). Chin. Phys. B, 2023, 32(4): 048704.
[3] High-fidelity universal quantum gates for hybrid systems via the practical photon scattering
Jun-Wen Luo(罗竣文) and Guan-Yu Wang(王冠玉). Chin. Phys. B, 2023, 32(3): 030303.
[4] Electrical manipulation of a hole ‘spin’-orbit qubit in nanowire quantum dot: The nontrivial magnetic field effects
Rui Li(李睿) and Hang Zhang(张航). Chin. Phys. B, 2023, 32(3): 030308.
[5] Thermoelectric signature of Majorana zero modes in a T-typed double-quantum-dot structure
Cong Wang(王聪) and Xiao-Qi Wang(王晓琦). Chin. Phys. B, 2023, 32(3): 037304.
[6] Nonlinear optical rectification of GaAs/Ga1-xAlxAs quantum dots with Hulthén plus Hellmann confining potential
Yi-Ming Duan(段一名) and Xue-Chao Li(李学超). Chin. Phys. B, 2023, 32(1): 017303.
[7] Ion migration in metal halide perovskite QLEDs and its inhibition
Yuhui Dong(董宇辉), Danni Yan(严丹妮), Shuai Yang(杨帅), Naiwei Wei(魏乃炜),Yousheng Zou(邹友生), and Haibo Zeng(曾海波). Chin. Phys. B, 2023, 32(1): 018507.
[8] Large Seebeck coefficient resulting from chiral interactions in triangular triple quantum dots
Yi-Ming Liu(刘一铭) and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(9): 097201.
[9] Dynamic transport characteristics of side-coupled double-quantum-impurity systems
Yi-Jie Wang(王一杰) and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(9): 097305.
[10] Steering quantum nonlocalities of quantum dot system suffering from decoherence
Huan Yang(杨欢), Ling-Ling Xing(邢玲玲), Zhi-Yong Ding(丁智勇), Gang Zhang(张刚), and Liu Ye(叶柳). Chin. Phys. B, 2022, 31(9): 090302.
[11] High-quality CdS quantum dots sensitized ZnO nanotube array films for superior photoelectrochemical performance
Qian-Qian Gong(宫倩倩), Yun-Long Zhao(赵云龙), Qi Zhang(张奇), Chun-Yong Hu(胡春永), Teng-Fei Liu(刘腾飞), Hai-Feng Zhang(张海峰), Guang-Chao Yin(尹广超), and Mei-Ling Sun(孙美玲). Chin. Phys. B, 2022, 31(9): 098103.
[12] Modeling and numerical simulation of electrical and optical characteristics of a quantum dot light-emitting diode based on the hopping mobility model: Influence of quantum dot concentration
Pezhman Sheykholeslami-Nasab, Mahdi Davoudi-Darareh, and Mohammad Hassan Yousefi. Chin. Phys. B, 2022, 31(6): 068504.
[13] Chiral splitting of Kondo peak in triangular triple quantum dot
Yi-Ming Liu(刘一铭), Yuan-Dong Wang(王援东), and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(5): 057201.
[14] Stability and luminescence properties of CsPbBr3/CdSe/Al core-shell quantum dots
Heng Yao(姚恒), Anjiang Lu(陆安江), Zhongchen Bai(白忠臣), Jinguo Jiang(蒋劲国), and Shuijie Qin(秦水介). Chin. Phys. B, 2022, 31(4): 046106.
[15] High-fidelity quantum sensing of magnon excitations with a single electron spin in quantum dots
Le-Tian Zhu(朱乐天), Tao Tu(涂涛), Ao-Lin Guo(郭奥林), and Chuan-Feng Li(李传锋). Chin. Phys. B, 2022, 31(12): 120302.
No Suggested Reading articles found!