Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(5): 054207    DOI: 10.1088/1674-1056/25/5/054207
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Lasing dynamics study by femtosecond time-resolved fluorescence non-collinear optical parametric amplification spectroscopy

Wei Dang(党伟)1,2, Qing Liao(廖清)3, Peng-Cheng Mao(毛鹏程)1, Hong-Bing Fu(付红兵)3, Yu-Xiang Weng(翁羽翔)1
1. Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
2. Hebei Key Lab of Optic-electronic Information and Materials, College of Physics Science and Technology, Hebei University, Baoding 071002, China;
3. Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry, Capital Normal University, Beijing 100048, China
Abstract  Femtosecond time-resolved fluorescence non-collinear optical parametric amplification spectroscopy (FNOPAS) is a versatile technique with advantages of high sensitivity, broad detection bandwidth, and intrinsic spectrum correction function. These advantages should benefit the study of coherent emission, such as measurement of lasing dynamics. In this letter, the FNOPAS was used to trace the lasing process in Rhodamine 6G (R6G) solution and organic semiconductor nano-wires. High-quality transient emission spectra and lasing dynamic traces were acquired, which demonstrates the applicability of FNOPAS in the study of lasing dynamics. Our work extends the application scope of the FNOPAS technique.
Keywords:  non-collinear optical parametric amplification      lasing dynamics      Rhodamine 6G      organic semiconductor nano-wires  
Received:  29 September 2015      Revised:  08 January 2016      Accepted manuscript online: 
PACS:  42.62.Fi (Laser spectroscopy)  
  42.65.Lm (Parametric down conversion and production of entangled photons)  
  42.65.Re (Ultrafast processes; optical pulse generation and pulse compression)  
  42.55.Sa (Microcavity and microdisk lasers)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 20925313 and 21503066), the Innovation Program of Chinese Academy of Sciences (Grant No. KJCX2-YW-W25), the Postdoctoral Project of Hebei University, China, and the Project of Science and Technology Bureau of Baoding City, China (Grant No. 15ZG029).
Corresponding Authors:  Yu-Xiang Weng     E-mail:  yxweng@aphy.iphy.ac.cn

Cite this article: 

Wei Dang(党伟), Qing Liao(廖清), Peng-Cheng Mao(毛鹏程), Hong-Bing Fu(付红兵), Yu-Xiang Weng(翁羽翔) Lasing dynamics study by femtosecond time-resolved fluorescence non-collinear optical parametric amplification spectroscopy 2016 Chin. Phys. B 25 054207

[1] Zhang C F, Dong Z W, You G J, Qian S X and Deng H 2006 Opt. Lett. 31 3345
[2] Koschorreck M, Gehlhaar R, Lyssenko V G, Swoboda M, Hoffmann M and Leo K 2005 Appl. Phys. Lett. 87 181108
[3] Ding C R, Lin W, Chen B C, Zhao F L, Dong J W, Shi M, Wang H Z, Hsu Y F and Djurišić A B 2008 Appl. Phys. Lett. 93 151902
[4] Ding C R, Li Z L, Qiu Z R, Feng Z C and Becla P 2012 Appl. Phys. Lett. 101 091115
[5] Dai D C and Monkman A P 2011 Phys. Rev. B 84 115206
[6] Wang H Z, Zheng X G, Zhao F L, Gao Z L and Yu Z X 1995 Phys. Rev. Lett. 74 4079
[7] Zhang W L, Chai L, Xing Q R and Wang Q Y 1999 Chin. Phys. Lett. 16 728
[8] Zhu H M, Fu Y P, Meng F, Wu X X, Gong Z Z, Ding Q, Gustafsson M V, Trinh M T, Jin S and Zhu X Y 2015 Nat. Mater. 14 636
[9] Liao Q, Xu Z Z, Zhong X L, Dang W, Shi Q, Zhang C, Weng Y X, Li Z Y and Fu H B 2014 J. Mater. Chem. C 2 2773
[10] Marciniak H, Teicher M, Scherf U, Trost S, Riedl T, Lehnhardt M, Rabe T, Kowalsky W and Lochbrunner S 2012 Phys. Rev. B 85 214204
[11] Song J K, Willer U, Szarko J M, Leone S R, Li S H and Zhao Y P 2008 J. Phys. Chem. C 112 1679
[12] Schanz R, Kovalenko S A, Kharlanov V and Ernsting N P 2001 Appl. Phys. Lett. 79 566
[13] Fita P, Stepanenko Y and Radzewicz C 2005 Appl. Phys. Lett. 86 021909
[14] Weng Y X, Han X F and Zhang J Y 2008 J. Opt. Soc. Am. B 25 1627
[15] Han X F, Weng Y X, Wang R, Chen X H, Luo K H, Wu L A and Zhao J M 2008 Appl. Phys. Lett. 92 151109
[16] Chen H L, Weng Y X, and Zhang J Y 2008 J. Opt. Soc. Am. B 26 1627
[17] Xu Z Z, Liao Q, Shi Q, Zhang H L and Fu H B 2012 Adv. Opt. Mater. 24 216
[18] Dang W, Mao P C and Weng Y X 2013 Rev. Sci. Instrum. 84 073105
[19] Fang H H, Chen Q D, Yang J, Wang L, Jiang Y, Xia H, Feng J, Ma Y G, Wang H Y and Sun H B 2010 Appl. Phys. Lett. 96 103508
[20] Svelto O 2010 Principles of Lasers 4th edn. (New York: Springer) pp. 337-338
[21] Kedenburg S, Vieweg M, Gissibl T and Giessen H 2012 Opt. Mater. Express 2 1588
[22] Hide F, Schwartz B J, Díaz-García M A and Heeger A J 1997 Synth. Met. 91 35
[1] Femtosecond laser-induced Cu plasma spectra at different laser polarizations and sample temperatures
Yitong Liu(刘奕彤), Qiuyun Wang(王秋云), Luyun Jiang(蒋陆昀), Anmin Chen(陈安民), Jianhui Han(韩建慧), and Mingxing Jin(金明星). Chin. Phys. B, 2022, 31(10): 105201.
[2] High-sensitivity methane monitoring based on quasi-fundamental mode matched continuous-wave cavity ring-down spectroscopy
Zhe Li(李哲), Shuang Yang(杨爽), Zhirong Zhang(张志荣), Hua Xia(夏滑), Tao Pang(庞涛),Bian Wu(吴边), Pengshuai Sun(孙鹏帅), Huadong Wang(王华东), and Runqing Yu(余润磬). Chin. Phys. B, 2022, 31(9): 094207.
[3] Combination of spark discharge and nanoparticle-enhanced laser-induced plasma spectroscopy
Qing-Xue Li(李庆雪), Dan Zhang(张丹), Yuan-Fei Jiang(姜远飞), Su-Yu Li(李苏宇), An-Min Chen(陈安民), and Ming-Xing Jin(金明星). Chin. Phys. B, 2022, 31(8): 085201.
[4] Generation of stable and tunable optical frequency linked to a radio frequency by use of a high finesse cavity and its application in absorption spectroscopy
Yueting Zhou(周月婷), Gang Zhao(赵刚), Jianxin Liu(刘建鑫), Xiaojuan Yan(闫晓娟), Zhixin Li(李志新), Weiguang Ma(马维光), and Suotang Jia(贾锁堂). Chin. Phys. B, 2022, 31(6): 064206.
[5] Interrogation of optical Ramsey spectrum and stability study of an 87Sr optical lattice clock
Jing-Jing Xia(夏京京), Xiao-Tong Lu(卢晓同), and Hong Chang(常宏). Chin. Phys. B, 2022, 31(3): 034209.
[6] Observation of photon recoil effects in single-beam absorption spectroscopy with an ultracold strontium gas
Fachao Hu(胡发超), Canzhu Tan(檀灿竹), Yuhai Jiang(江玉海), Matthias Weidemüller, and Bing Zhu(朱兵). Chin. Phys. B, 2022, 31(1): 016702.
[7] An approach to gas sensors based on tunable diode laser incomplete saturated absorption spectra
Wei Nie(聂伟), Zhen-Yu Xu(许振宇), Rui-Feng Kan(阚瑞峰), Mei-Rong Dong(董美蓉), and Ji-Dong Lu(陆继东). Chin. Phys. B, 2021, 30(6): 064213.
[8] A pressure-calibration method of wavelength modulation spectroscopy in sealed microbial growth environment
Kun-Yang Wang(王坤阳), Jie Shao(邵杰), Li-Gang Shao(邵李刚), Jia-Jin Chen(陈家金), Gui-Shi Wang(王贵师), Kun Liu(刘琨), and Xiao-Ming Gao(高晓明). Chin. Phys. B, 2021, 30(5): 054203.
[9] A 532 nm molecular iodine optical frequency standard based on modulation transfer spectroscopy
Feihu Cheng(程飞虎), Ning Jin(金宁), Fenglei Zhang(张风雷), Hui Li(李慧), Yuanbo Du(杜远博), Jie Zhang(张洁), Ke Deng(邓科), and Zehuang Lu(陆泽晃). Chin. Phys. B, 2021, 30(5): 050603.
[10] Setup of a dipole trap for all-optical trapping
Miao Wang(王淼), Zheng Chen(陈正), Yao Huang(黄垚), Hua Guan(管桦), and Ke-Lin Gao(高克林). Chin. Phys. B, 2021, 30(5): 053702.
[11] Analysis of relative wavelength response characterization and its effects on scanned-WMS gas sensing
Dao Zheng(郑道), Zhi-Min Peng(彭志敏), Yan-Jun Ding(丁艳军), and Yan-Jun Du(杜艳君). Chin. Phys. B, 2021, 30(4): 044210.
[12] Controlling multiple optomechanically induced transparency in the distant cavity-optomechanical system
Rui-Jie Xiao(肖瑞杰), Gui-Xia Pan(潘桂侠), and Xiao-Ming Xiu(修晓明). Chin. Phys. B, 2021, 30(3): 034209.
[13] Effect of the distance between focusing lens and target surface on quantitative analysis of Mn element in aluminum alloys by using filament-induced breakdown spectroscopy
Xue-Tong Lu(陆雪童), Shang-Yong Zhao(赵上勇), Xun Gao(高勋), Kai-Min Guo(郭凯敏), and Jing-Quan Lin(林景全). Chin. Phys. B, 2020, 29(12): 124209.
[14] Absorption, quenching, and enhancement by tracer in acetone/toluene laser-induced fluorescence
Guang Chang(常光), Xin Yu(于欣), Jiangbo Peng(彭江波), Yang Yu(于杨), Zhen Cao(曹振), Long Gao(高龙), Minghong Han(韩明宏), and Guohua Wu(武国华). Chin. Phys. B, 2020, 29(12): 124212.
[15] Progress on the 40Ca+ ion optical clock
Baolin Zhang(张宝林), Yao Huang(黄垚), Huaqing Zhang(张华青), Yanmei Hao(郝艳梅), Mengyan Zeng(曾孟彦), Hua Guan(管桦), Kelin Gao(高克林). Chin. Phys. B, 2020, 29(7): 074209.
No Suggested Reading articles found!