Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(4): 040501    DOI: 10.1088/1674-1056/25/4/040501
GENERAL Prev   Next  

Dynamics of spinor Bose-Einstein condensate subject to dissipation

Man-Man Pang(庞曼曼), Ya-Jiang Hao(郝亚江)
Department of Physics, University of Science and Technology Beijing, Beijing 100083, China
Abstract  We investigate the internal dynamics of the spinor Bose-Einstein condensates subject to dissipation by solving the Lindblad master equation. It is shown that for the condensates without dissipation its dynamics always evolve along a specific orbital in the phase space of (n0, θ) and display three kinds of dynamical properties including Josephson-like oscillation, self-trapping-like oscillation, and ‘running phase'. In contrast, the condensates subject to dissipation will not evolve along the specific dynamical orbital. If component-1 and component-(-1) dissipate at different rates, the magnetization m will not conserve and the system transits between different dynamical regions. The dynamical properties can be exhibited in the phase space of (n0, θ, m).
Keywords:  spinor Bose-Einstein condensates      dissipation      master equation  
Received:  19 October 2015      Revised:  02 December 2015      Accepted manuscript online: 
PACS:  05.30.Jp (Boson systems)  
  03.65.Yz (Decoherence; open systems; quantum statistical methods)  
  03.75.Mn (Multicomponent condensates; spinor condensates)  
  03.75.Kk (Dynamic properties of condensates; collective and hydrodynamic excitations, superfluid flow)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11004007) and the Fundamental Research Funds for the Central Universities of China.
Corresponding Authors:  Ya-Jiang Hao     E-mail:

Cite this article: 

Man-Man Pang(庞曼曼), Ya-Jiang Hao(郝亚江) Dynamics of spinor Bose-Einstein condensate subject to dissipation 2016 Chin. Phys. B 25 040501

[1] Stamper-Kurn D M, Andrews M R, Chikkatur A P,Inouye S, Miesner H J, Stenger J and Ketterle W 1998 Phys. Rev. Lett 80 2027
[2] Stenger J, Inouye S, Stamper-Kurn D M, Miesner H J, Chikkatur A P and Ketterle W 1998 Nature 396 345
[3] Lamacraft A 2007 Phys. Rev. Lett. 98 160404
[4] Yuki K and Masahito U 2012 Phys. Rep. 520 253
[5] Pu H, Zhang W P and Pierre M 2001 Phys. Rev. Lett. 87 140405
[6] Gu Q and Richard A K 2003 Phys. Rev. A 68 031604(R)
[7] Recati A, Fedichev P O, Zwerger W and Zoller P 2003 Phys. Rev. Lett. 90 020401
[8] Pasquiou P, Maréchal E, Bismut G, Pedri P, Vernac L, Gorceix O and Laburthe-Tolra B 2011 Phys. Rev. Lett. 106 255303
[9] Ryan B, Ari T and Eugene D 2006 Phys. Rev. Lett. 97 180412
[10] Chong G S and Borondo F 2008 Phys. Rev. E 78 016204
[11] Gu Q and Qiu H B 2007 Phys. Rev. Lett. 98 200401
[12] Zhang J, Yang B G and Zhang Y B 2011 Phys. Rev. A 83 053634
[13] Cheng R, Liang J Q and Zhang Y B 2005 J. Phys. B: At. Mol. Opt. Phys. 38 2569
[14] Romano D R and de Passos E J V 2004 Phys. Rev. A 70 043614
[15] Li H B, Pu Z G, Chapman M S and Zhang W X 2015 Phys. Rev. A 92 013630
[16] Hao Y J and Gu Q 2011 Phys. Rev. A 83 043620
[17] Witthaut D, Trimborn F and Wimberger S 2009 Phys. Rev. A 79 033621
[18] Trimborn F, Witthaut D and Wimberger S 2008 J. Phys. B: At. Mol. Opt. Phys. 41 171001
[19] Syassen N, Bauer D M, Lettner M, Volz T and Dietze D 2008 Science 320 1329
[20] Valeriy A B, Vladimir V K, Víctor M.Pérez-García and Herwig Ott 2009 Phys. Rev. Lett. 102 144101
[21] Rudolf G, Hemmerling B, Jonas F, Michael A and Markus K O 2006 Phys. Rev. Lett. 96 130404
[22] Gati R, Estve J, Hemmerling B, Ottenstein T B, Appmeier J, Weller A and Oberthaler M K 2006 New J. Phys. 8 189
[23] Diehl S, Micheli A, Kantian A, Kraus B, Büchler H P and Zoller P 2008 Nat. Phys. 4 878
[24] Antonio D L 2013 Phys. Rev. Lett. 110 120403
[25] Roland Cristopher F C, Sebastian D, Harri M, Markus O and Gentaro W 2014 Phys. Rev. A 89 013620
[26] Wu Y 1996 Phys. Rev. A 54 4534
[27] Law C K, Pu H and Bigelow N P 1998 Phys. Rev. Lett. 81 5257
[28] Lindblad G 1976 Commun. Math. Phys. 48 119
[29] Gardiner C W and Zoller P 2004 Quantum Noise, 3rd edn. (Berlin/Heidelberg: Springer-Verlag), ISBN: 9783540223016, pp. 13-18
[30] Yi S, MüstecaplioğluÖ E, Sun C P and You L 2002 Phys. Rev. A 66 011601(R)
[31] Dalfovo F, Giorgini S, Pitaevskii L P and Stringari S 1999 Rev. Mod. Phys. 71 463
[32] Pethick C J and Smith H 2008 Bose-Einstein Condensations in Dilute Gases 2nd edn. (Cambridge: Cambridge University Press), ISBN: 9781139811088, pp. 159-162
[33] Black A T, Gomez E, Turner L D, Jung S and Lett P D 2007 Phys. Rev. Lett. 99 070403
[34] Smerzi A, Fantoni S, Giovanazzi S and Shenoy S R 1998 Phys. Rev. Lett. 79 4950
[1] Theoretical and experimental study of phase optimization of tapping mode atomic force microscope
Zheng Wei(魏征), An-Jie Peng(彭安杰), Feng-Jiao Bin(宾凤姣), Ya-Xin Chen(陈亚鑫), and Rui Guan(关睿). Chin. Phys. B, 2022, 31(7): 076801.
[2] Influences of Marangoni convection and variable magnetic field on hybrid nanofluid thin-film flow past a stretching surface
Noor Wali Khan, Arshad Khan, Muhammad Usman, Taza Gul, Abir Mouldi, and Ameni Brahmia. Chin. Phys. B, 2022, 31(6): 064403.
[3] Shedding vortex simulation method based on viscous compensation technology research
Hao Zhou(周昊), Lei Wang(汪雷), Zhang-Feng Huang(黄章峰), and Jing-Zhi Ren(任晶志). Chin. Phys. B, 2022, 31(4): 044702.
[4] Optimized pulse for stimulated Raman adiabatic passage on noisy experimental platform
Zhi-Ling Wang(王志凌), Leiyinan Liu(刘雷轶男), and Jian Cui(崔健). Chin. Phys. B, 2021, 30(8): 080305.
[5] Spin-orbit-coupled spin-1 Bose-Einstein condensates confined in radially periodic potential
Ji Li(李吉), Tianchen He(何天琛), Jing Bai(白晶), Bin Liu(刘斌), and Huan-Yu Wang(王寰宇). Chin. Phys. B, 2021, 30(3): 030302.
[6] Dissipative preparation of multipartite Greenberger-Horne-Zeilinger states of Rydberg atoms
Chong Yang(杨崇), Dong-Xiao Li(李冬啸), and Xiao-Qiang Shao(邵晓强). Chin. Phys. B, 2021, 30(2): 023201.
[7] Quantum dynamics on a lossy non-Hermitian lattice
Li Wang(王利), Qing Liu(刘青), and Yunbo Zhang(张云波). Chin. Phys. B, 2021, 30(2): 020506.
[8] Quantum exceptional points of non-Hermitian Hamiltonian and Liouvillian in dissipative quantum Rabi model
Xianfeng Ou(欧先锋), Jiahao Huang(黄嘉豪), and Chaohong Lee(李朝红). Chin. Phys. B, 2021, 30(11): 110309.
[9] Spinor F=1 Bose-Einstein condensates loaded in two types of radially-periodic potentials with spin-orbit coupling
Ji-Guo Wang(王继国), Yue-Qing Li(李月晴), Han-Zhao Tang(唐翰昭), and Ya-Fei Song(宋亚飞). Chin. Phys. B, 2021, 30(10): 106701.
[10] Progress on 2D topological insulators and potential applications in electronic devices
Yanhui Hou(侯延辉), Teng Zhang(张腾), Jiatao Sun(孙家涛), Liwei Liu(刘立巍), Yugui Yao(姚裕贵), Yeliang Wang(王业亮). Chin. Phys. B, 2020, 29(9): 097304.
[11] Characteristics of AlGaN/GaN high electron mobility transistors on metallic substrate
Minglong Zhao(赵明龙), Xiansheng Tang(唐先胜), Wenxue Huo(霍雯雪), Lili Han(韩丽丽), Zhen Deng(邓震), Yang Jiang(江洋), Wenxin Wang(王文新), Hong Chen(陈弘), Chunhua Du(杜春花), Haiqiang Jia(贾海强). Chin. Phys. B, 2020, 29(4): 048104.
[12] Quantized vortices in spinor Bose–Einstein condensates with time–space modulated interactions and stability analysis
Yu-Qin Yao(姚玉芹)† and Ji Li(李吉). Chin. Phys. B, 2020, 29(10): 103701.
[13] Damping of displaced chaotic light field in amplitude dissipation channel
Ke Zhang(张科), Lan-Lan Li(李兰兰), and Hong-Yi Fan(范洪义)†. Chin. Phys. B, 2020, 29(10): 100302.
[14] Dissipative generation for steady-state entanglement of two transmons in circuit QED
Shuang He(何爽), Dan Liu(刘丹), Ming-Hao Li(李明浩). Chin. Phys. B, 2019, 28(8): 080303.
[15] Second order conformal multi-symplectic method for the damped Korteweg-de Vries equation
Feng Guo(郭峰). Chin. Phys. B, 2019, 28(5): 050201.
No Suggested Reading articles found!