Special Issue:
SPECIAL TOPIC — Quantum computation and quantum simulation
|
SPECIAL TOPIC—Quantum computation and quantum simulation |
Prev
Next
|
|
|
Dissipative preparation of multipartite Greenberger-Horne-Zeilinger states of Rydberg atoms |
Chong Yang(杨崇)1,2, Dong-Xiao Li(李冬啸)3, and Xiao-Qiang Shao(邵晓强)1,2,† |
1 Center for Quantum Sciences and School of Physics, Northeast Normal University, Changchun 130024, China; 2 Center for Advanced Optoelectronic Functional Materials Research, and Key Laboratory for UV Light-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, Changchun 130024, China; 3 School of Physics, International Joint Laboratory on Quantum Sensing and Quantum Metrology, Huazhong University of Science and Technology, Wuhan 430074, China |
|
|
Abstract The multipartite Greenberger-Horne-Zeilinger (GHZ) states play an important role in large-scale quantum information processing. We utilize the polychromatic driving fields and the engineered spontaneous emissions of Rydberg states to dissipatively drive three-and four-partite neutral atom systems into the steady GHZ states, at the presence of the next-nearest neighbor interaction of excited Rydberg states. Furthermore, the introduction of quantum Lyapunov control can help us optimize the dissipative dynamics of the system so as to shorten the convergence time of the target state, improve the robustness against the spontaneous radiations of the excited Rydberg states, and release the limiting condition for the strengths of the polychromatic driving fields. Under the feasible experimental conditions, the fidelities of three-and four-partite GHZ states can be stabilized at 99.24% and 98.76%, respectively.
|
Received: 14 October 2020
Revised: 20 November 2020
Accepted manuscript online: 30 December 2020
|
PACS:
|
32.80.Ee
|
(Rydberg states)
|
|
02.30.Yy
|
(Control theory)
|
|
03.65.Ud
|
(Entanglement and quantum nonlocality)
|
|
42.50.Lc
|
(Quantum fluctuations, quantum noise, and quantum jumps)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11774047 and 12047525). |
Corresponding Authors:
†Corresponding author. E-mail: shaoxq644@nenu.edu.cn
|
Cite this article:
Chong Yang(杨崇), Dong-Xiao Li(李冬啸), and Xiao-Qiang Shao(邵晓强) Dissipative preparation of multipartite Greenberger-Horne-Zeilinger states of Rydberg atoms 2021 Chin. Phys. B 30 023201
|
1 Briegel H J, D\"ur W, Cirac J I and Zoller P 1998 Phys. Rev. Lett. 81 5932 2 Bennett C H and DiVincenzo D P 2000 Nature 404 247 3 Deng F G, Long G L and Liu X S 2003 Phys. Rev. A 68 042317 4 Deng F G and Long G L 2004 Phys. Rev. A 69 052319 5 Gisin N and Thew R 2007 Nat. Photon. 1 165 6 Sheng Y B, Deng F G and Long G L 2010 Phys. Rev. A 82 032318 7 Andrew S 1998 Rep. Prog. Phys. 61 117 8 Raussendorf R and Briegel H J 2001 Phys. Rev. Lett. 86 5188 9 Ladd T D, Jelezko F, Laflamme R, Nakamura Y, Monroe C and OBrien J L 2010 Nature 464 45 10 Buluta I, Ashhab S and Nori F 2011 Rep. Prog. Phys. 74 104401 11 Fei S M 2020 Quantum Engineering 2 e48 12 Yang L, Ma H Y, Zheng C, Ding X L, Gao J C and L G L 2017 Acta Phys. Sin. 66 230303 (in Chinese) 13 Braunstein S and van Loock P 2005 Rev. Mod. Phys. 77 513 14 Wendin G 2017 Rep. Prog. Phys. 80 106001 15 Flamini F, Spagnolo N and Sciarrino F 2018 Rep. Prog. Phys. 82 016001 16 Hu X M, Zhang C, Zhang C J, Liu B H, Huang Y F, Han Y J, Li C F and Guo G C 2019 Quantum Engineering 1 e13 17 Jin R B, Cai W H, Ding C, Mei F, Deng G W, Shimizu R and Zhou Q 2020 Quantum Engineering 2 e38 18 Huang W J, Chien W C, Cho C H, Huang C C, Huang T W and Chang C R 2020 Quantum Engineering 2 e45 19 Mastriani M and Iyengar S S 2020 Quantum Engineering 2 e55 20 Yang L, Liu Y C and Li Y S 2020 Chin. Phys. B 29 060301 21 Liu Y H, Wu L, Yan Z H, Jia X J and Peng K C 2019 Acta Phys. Sin. 68 034202 (in Chinese) 22 Yang C, Li D X and Shao X Q 2019 Sci. China-Phys. Mech. & Astron. 62 110312 23 Alioscia H, Radu I and Paolo Z 2005 Phys. Rev. A 71 022315 24 G\"uhne O and Toth G 2009 Phys. Rep. 474 1 25 Ryszard H, Horodecki P, Horodecki M and Horodecki K 2009 Rev. Mod. Phys. 81 865 26 Pan J W, Chen Z B, Lu C Y, Weinfurter H, Zeilinger A and \.Zukowski M 2012 Rev. Mod. Phys. 84 777 27 Hillery M, Bu\vzek V and Berthiaume A 1999 Phys. Rev. A 59 1829 28 Tittel W, Zbinden H and Gisin N 2001 Phys. Rev. A 63 042301 29 Chen Y A, Zhang A N, Zhao Z, Zhou X Q, Lu C Y, Peng C Z, Yang T and Pan J W 2005 Phys. Rev. Lett. 95 200502 30 Karlsson A and Bourennane M 1998 Phys. Rev. A 58 4394 31 Jin L H, Jin X R and Zhang S 2005 Phys. Rev. A 72 024305 32 Jung E, Hwang M R, Ju Y H, Kim M S, Yoo S K, Kim H, Park D, Son J W, Tamaryan S and Cha S K 2008 Phys. Rev. A 78 012312 33 Lee S W, Paternostro M, Lee J and Jeong H 2013 Phys. Rev. A 87 022123 34 Zhang C, Huang Y F, Wang Z, Liu B H, Li C F and Guo G C 2015 Phys. Rev. Lett. 115 260402 35 Jiao Y C, Han X X, Yang Z W, Zhao J M and Jia S T 2016 Chin. Phys. Lett. 33 123201 36 Yan D, Wang B B, Bai W J, Liu B, Du X G and Ren C N 2019 Acta Phys. Sin. 68 084203 (in Chinese) 37 Li X K, Jia F D, Yu F C, Li M Y, Xue P, Xu X Y and Zhong Z P 2019 Acta Phys. Sin. 68 043201 (in Chinese) 38 Zhang H X, Fan C H, Cui C L and Wu J H 2020 Chin. Phys. B 29 013204 39 He S, Liu D, Li M H 2019 Chin. Phys. B 28 080303 40 Ma D D, Zhang K Y and Qian J 2019 Chin. Phys. B 28 013202 41 Su S L 2018 Chin. Phys. B 27 110304 42 Jaksch D, Cirac J I, Zoller, Rolston S L, C\oté R and Lukin M D 2000 Phys. Rev. Lett. 85 2208 43 Weimer H, Mu\"uller M, Lesanovsky I, Zoller P and B\"uchler H P 2010 Nat. Phy. 6 382 44 Mølmer K, Isenhower L and Saffman M 2011 J. Phys. B: A. Mo. Opt. Phys. 44 184016 45 Saffman M and M\olmer K 2009 Phys. Rev. Lett. 102 240502 46 Zhang X L, Isenhower L, Gill A T, Walker T G and Saffman M 2010 Phys. Rev. A 82 030306 47 Wilk T, Ga\"etan A, Evellin C, Wolters J, Miroshnychenko Y, Grangier P and Browaeys A 2010 Phys. Rev. Lett. 104 010502 48 Shao X Q, Wu J H and Yi X X 2017 Phys. Rev. A 95 022317 49 Brion E, Pedersen L, Saffman M and M\olmer K 2008 Phys. Rev. Lett. 100 110506 50 Han Y and He B, Heshami K, Li C Z, Simon C 2010 Phys. Rev. A 81 052311 51 Zhao B, M\"uller M, Hammerer K and Zoller P 2010 Phys. Rev. A 81 052329 52 Tiarks D, Baur S, Schneider K, D\"urr S and Rempe G 2014 Phys. Rev. Lett. 113 053602 53 Su S L, Guo F Q, Wu J L, Jin Z, Shao X Q and Zhang S 2020 Europhys. Lett. 131 53001 54 Su S L, Shen H Z, Liang E and Zhang S 2018 Phys. Rev. A 98 032306 55 Su S L, Guo F Q, Tian L, Zhu X Y, Yan L L, Liang E J and Feng M 2020 Phys. Rev. A 101 012347 56 Su S L, Liang E J, Zhang S, Wen J J, Sun L L, Jin Z and Zhu A D 2016 Phys. Rev. A 93 042328 57 Su S L, Tian Y Z, Shen H Z, Zang H P, Liang E J and Zhang S 2017 Phys. Rev. A 96 042335 58 Zhu X Y, Liang E J and Su S L 2019 Opt. Soc. Am. B 36 1937 59 Wu J L, Song J and Su S L 2020 Phys. Lett. A 384 126039 60 Wu J L, Su S L, Wang Y, Song J, Xia Y and Jiang Y Y 2020 Opt. Lett. 45 1200 61 Su S L, Gao Y, Liang E J and Zhang S 2017 Phys. Rev. A 95 022319 62 Shao X Q 2020 Phys. Rev. A 102 053118 63 Tan X, Wu J L, Deng C, Mao W J, Wang H T and Ji X 2018 Chin. Phys. B 27 100307 64 Carr A W and Saffman M 2013 Phys. Rev. Lett. 111 033607 65 Shao X Q, Wu J H, Yi X X and Long G L 2017 Phys. Rev. A 96 062315 66 Shao X Q, You J B, Zheng T Y, Oh C H and Zhang S 2014 Phys. Rev. A 89 052313 67 Li D X, Shao X Q, Wu J H and Yi X X 2018 Opt. Lett. 43 1639 68 Li D X, Shao X Q, Wu J H, Yi X X and Zheng T Y 2018 Opt. Express 26 2292 69 Li R, Yu D M, Su S L and Qian J 2020 Phys. Rev. A 101 042328 70 Li D X and Shao X Q 2019 Phys. Rev. A 99 032348 71 Shao X Q, Li D X, Ji Y Q, Wu J H and Yi X X 2017 Phys. Rev. A 96 012328 72 Shao X Q, Wu J H and Yi X X 2017 Phys. Rev. A 95 062339 73 Wintermantel T M, Wang Y, Lochead G, Shevate S, Brennen G K and Whitlock S 2020 Phys. Rev. Lett. 124 070503 74 Weber S, Tresp C, Menke H, Urvoy A, Firstenberg O, B\"uchler H P and Hofferberth S 2017 J. Phys. B: At. Mol. Opt. Phys. 50 133001 76 Cui W and Nori F 2013 Phys. Rev. A 88 063823 77 Li W L, Li C and Song H S 2016 Phys. Rev. E 93 062221 78 Hu J, Ke Q and Ji Y H 2016 Int. J. Mod. Phys. B 30 1650177 79 Leib M and Hartmann M J 2014 Phys. Rev. Lett. 112 223603 80 Coron J M, Grigoriu A, Lefter C and Turinici G 2009 New J. Phys. 11 105034 81 Wang X T and Schirmer S G 2009 Phys. Rev. A 80 042305 82 Hou S C, Khan M A, Yi X X, Dong D Y and Petersen I R 2012 Phys. Rev. A 86 022321 83 Yi X X, Huang X L, Wu C F and Oh C H 2009 Phys. Rev. A 80 052316 84 Mazyar M, Pierre R and Gabriel T 2005 Automatica 41 1987 85 Altafini C 2007 IEEE Trans. Autom. Control 52 2019 86 Sugawara M 2003 J. Chem. Phys. 118 6784 87 D'Alessandro D2007 Introduction to Quantum Control and Dynamics (Boca Raton, FL: CRC Press) 88 Schönleber D W, Eisfeld A, Genkin M, Whitlock S and W\"uster S 2015 Phys. Rev. Lett. 114 123005 89 Nogrette F, Labuhn H, Ravets S, Barredo D, Béguin L, Vernier A, Lahaye T and Browaeys A 2014 Phys. Rev. X 4 021034 90 Endres M, Bernien H, Keesling A, Levine H, Anschuetz E R, Krajenbrink A, Senko C, Vuletic V, Greiner M and Lukin M D 2018 New J. Phys. 20 013011 91 Singer K, Stanojevic J, Weidemller M and Robin C\ot\'e R 2005 J. Phys. B: At. Mol. Opt. Phys. 38 S295 92 Beterov I I, Ryabtsev I I, Tretyakov D B and Entin V M 2009 Phys. Rev. A 79 052504 93 Whitlock S, Wildhagen H, Weimer H and Weidem\"uller M 2019 Phys. Rev. Lett. 123 213606 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|